
Deriving the Singular Value Decomposition (SVD) from First

Principles

Irene Markelic

February 19, 2026

Figure 1: Image from Wikipedia and altered by author.

1 Introduction

The Singular Value Decomposition (SVD) is ”a highlight of linear algebra” to quote Prof.
Strang ([1] p. 371). However, I must confess that when I studied it I had a difficult time
understanding it and this was due to how it was presented. The SVD is often introduced
as a given formula which is then shown to just work. But it always felt very unsatisfying
to me not knowing why. So - here is the SVD explained the way I wish I had been taught,
which is deriving it from first principles.

1

2 Preliminaries

It is very important to understand the concepts that the SVD builds on. Thus, here is a
list of topics that you should be ”good friends” with and to make it easy for you if they
feel a bit rusty, I’ve linked my previous guides along with the main message you’ll need for
this article. When you have a good understanding of spectral decomposition you are good
to go.

• Linear Transformation and Change of Basis

• Key point: Multiplying a vector by the inverse of a basis matrix represents a change
of basis. The vector itself doesn’t change, but we are now expressing it in a different
coordinate system.

• Eigenvalues and Eigenvectors

• Key point: Eigenvectors are specific to a matrix. They are unique because they do
not change their direction when transformed by that matrix; they only get scaled by
the eigenvalues. If a matrix A has enough linearly independent eigenvectors we can
collect these in a matrix B and they form a basis for the vector space that A lives
in. We call B an eigenbasis of A. In some cases the eigenvectors in the eigenbasis
are even orthogonal and that has some really nice properties, which we exploit when
diagonalizing symmetric matrices.

• Matrix Diagonalization

• Key point: If a square matrix A has an eigenbasis B we can simplify any trans-
formation Ax by first expressing x in terms of the eigenbasis (by computing the
change of basis B−1x), scaling it by the eigenvalues, and then transforming it back
to the standard basis. Not all matrices can be diagonalized this way, usually, certain
conditions (like having n linearly independent eigenvectors) are required.

• Why orthogonal matrices rotate and diagonal matrices stretch

• Spectral Decomposition

• Key point: This is the diagonalization of symmetric matrices. Symmetric matrices
are special. They can ALWAYS be diagonalized. In addition, their eigenbasis is
always orthogonal. Once normalized, this basis becomes orthonormal, which gives us
the beautiful property that the inverse is simply the transpose: Q−1 = QT. Because
of this, the diagonalization has a very nice geometric interpretation. The action of
the matrix A on a vector x is decomposed into: a) the vector is expressed in the
eigenbasis of the A by a mere rotation, i.e. the required change of basis equals a
rotation. b) Once x is expressed in the coordinates of the eigenbasis, the action of
A reduces to a simple stretch. c) It then gets rotated back into the original vector

2

https://markelic.de/linear-transformation-vs-change-of-basis-a-deepconceptual-guide-to-matrix-diagonalization/
https://markelic.de/unlocking-matrix-secrets-understanding-eigenvalues-and-eigenvectors/
https://markelic.de/essential-math-for-data-science-matrix-diagonalization-clearly-explained/
https://markelic.de/understanding-the-geometry-of-orthogonal-and-diagonal-matrices/
https://markelic.de/spectral-decomposition-guide/

space, i.e. the second change of basis also reduces to a rotation. It is important to
note, that the change of bases operations do not alter the length of x. The only
operation that does that is the diagonal matrix which does the stretching. Therefore
we say that all the ”energy” (the stretching) is contained in the diagonal matrix.

3 The Problem to Solve

I believe concepts are best understood if we understand what problem they were developed
to solve. So what is the problem? Matrix diagonalization (factoring a matrix into the prod-
uct of matrices where one is diagonal) is great for several reasons: it eases computations,
it allows to understand the actions of a matrix better, and when we write the factoriza-
tion as a sum of outer products, we can use it for approximation tasks (think of principal
component decomposition, PCA). So we want matrix diagonalization. Sadly, only specific
matrices can be diagonalized and it is not always easy to find out which ones.

However, if a matrix is symmetric then we know straight away that not only can it be
diagonalized into QΛQT , but also that Q is orthonormal which makes all the energy go
into the diagonal matrix, which is a very clean decomposition. The other two matrices are
square and orthonormal which means they perform rotations.

If only we could have this for any matrix, not only symmetric ones! This is the problem
we want to solve and you’ve guessed it - the SVD is the solution to this problem.

4 The Strategy

Let’s pretend for a moment the SVD didn’t exist and we were given the task to solve this
problem. Let’s think about how we could achieve this based on the information we already
have: We start off with a matrix A ∈ Rm×n and what we want is an expression like

A = BDC (1)

thus a diagonal matrix D and two other matrices B, and C. In particular, we want B and
C to be bases which are square and orthonormal to have a clear ”separation of concerns,”
just like we do when dealing with spectral decomposition. Now we have defined what we
have and what we want.

Now, how to go about this? Apparently being symmetric is a superpower for a matrix.
But A is not symmetric. But wait - at least we can derive a symmetric matrix from it
simply by multiplying A with its own transpose from the left or right. So if A ∈ Rm×n,
then AAT ∈ Rmxm and ATA ∈ Rnxn are symmetric matrices. We know that both of AAT

and ATA can be diagonalized and that they each have an orthogonal basis (since they are
symmetric).

3

https://markelic.de/a-visual-tutorial-for-matrix-multiplication

Can we do something with this information? Once again, we want to express the actions
that A applies to a vector x to be expressed as a sequence of operations:

Ax = BDCx (2)

We have already stated that the left matrix B and the right matrix C should be orthogonal
bases. Why not use the basis of either AAT or ATA. Which one could be applied to x?
remember that x ∈ Rn? Only the basis of ATA, let’s call it V, can multiply it because
V is ∈ Rnxn. We could apply a change of basis to x to express it in the coordinates
determined by V. To do so we must multiply x by the inverse, V−1. Since in this case
the eigenbasis is orthonormal we know its inverse equals its own transpose. Convenient.
But not a coincidence, we chose a symmetric matrix precisely for this reason. So we can
compute VTx and the result is the same x expressed in a different reference system.

Recall that we want an equation that has Ax on the left side. To be able to write this, we
would have to undo the change of basis because A expects a vector expressed in standard
normal coordinates not the coordinates of some other basis. Of course, that is easy; we
just undo the change of basis by multiplying by V, so we have VVTx. This is a bit like
expanding an expression e.g. saying a = a+ 1− 1. So this is what it looks like:

Ax = AVVTx (3)

We are making progress. What is missing? Oh - no diagonal matrix yet. Also, we need
another orthonormal basis. Let’s have a closer look at AV.

We know that the column vectors in V, the vi are the eigenvectors of ATA and therefore
by definition

ATAvi = λivi (4)

where λi is the corresponding eigenvalue.

We also know that V is an orthonormal basis. That means that the dot product of any
two different column vectors of V will be 0 and the dot product of the same column vectors
equal 1.

Does this get changed when multiplying it by A?

We need to check if (Avi)
TAvj = 0 for i ̸= j:

(Avi)
TAvj = vT

i A
TAvj = vT

i (A
TA)vj = vT

i λjvj = λjv
T
i vj = 0 (5)

If i = j we would have λiv
T
i vi = λi Wow! So AV IS still an orthogonal eigenbasis. Only -

it is not orthonormal, we have just shown that the lengths of the vectors are
√
λi and not

4

1. (Why is the length
√
λi? Because the dot product of a column vector vi of AV with

itself was shown to be λi and the length of a vector is defined to be the square root of its
dot product.) That is easy to fix, we just divide each column vector by its corresponding
length, i.e. the square root of the eigenvalue,

√
λi. Actually - it is tedious to always say

”the square root of the eigenvalues of ATA, from now on I’ll refer to these as singular
values and denote them as σi. But back to the normalization. We can write this elegantly
in matrix notation; we can construct a new matrix, Σ+ of the same shape as (AV)T and
we place the reciprocal of the singular values on its diagonal. For example, if AV ∈ R3,2,
then Σ+ will have the same shape and the last row will be zeros, see 6:


1√
λ1

0

0 1√
λ2

0 0

 (6)

(Note, the above matrix fullfills the concept of an inverse, but since Σ is not square
it doesn’t have a real inverse. What we constructed above is called the Moore-Penrose
pseudo-inverse) Only now the equality in our equation Ax = . . . doesn’t hold anymore,
because we divided the right side by Σ, thus we need to undo this again, just like before
when we undid the change of basis operation. To undo this, we simply multiply by Σ.
With this we get:

Ax = AVΣ+ΣVTx (7)

This is really exciting, because now we have all the pieces we wanted! We just rearrange
this term a bit by naming Û = AVΣ+. Now we have

Ax = ÛΣVTx (8)

Et voilà! This is the formula for the SVD - well, almost! It is what you get when you make
the following call in Python:

Thin SVD (returns U as m x n)

U, S, Vh = np.linalg.svd(A, full_matrices=False)

Note, that the matrix Û is not necessarily a square matrix. But we need a square matrix,
or rather - we want a square matrix, because we wanted a clear ”separation of concerns”.
We wanted a rotation a stretch and another rotation. A rotation matrix must be square,
because it must have an inverse. If we rotate in one direction, we will need to be able to
rotate back. If we tried to do this with a let’s say 2× 4 matrix, we would map from 4-d to
2-d. We would loose information, we could never go back to the original.

There are methods to complete an orthonormal basis, e.g. using the Gram-Schmidt process
if A is tall and thin. However, I won’t go into details here, because the important thing in

5

my opinion is that we can start with ATA and all the rest follows from this. Note that the
additional columns we use to complete U into a square matrix must be orthogonal to the
already-computed columns of Û. One natural choice is to take them from the null space
of AT , since any vector in the null space of AT is orthogonal to the column space of A,
which is exactly where the columns of Û live.

In Python we compute the full (square U) SVD like this:

Full SVD (returns U as m x n)

U, S, Vh = np.linalg.svd(A, full_matrices=True)

Now, we have finally reached our goal, we arrived at the decomposition with two orthonor-
mal basis matrices U and VT . Remember that we call the entries in Σ singular values.
Accordingly we call the vectors in U the left singular vectors of A and the vectors in V the
right singular vectors. They form a triplet as we will see in the following paragraph.

5 Order Matters

Recall that V constitutes the eigenbasis for ATA. It’s crucial to understand that they are
paired with their corresponding eigenvalue and thus the derived singular value in Σ and
therefore also with the corresponding left singular vector which is derived from this. To
illustrate this, I’ve color-coded these relationships in Figure 2. For instance, u1, σ1, and
vT
1 form a single set, where the lower case letters u, and v indicate a column of U and V,

respectively. And similiary u2, σ2, and vT
2 form a set, and so on.

We can reorder these components as long as we don’t break the triplets, for example, we
could swap the third column of U with the first column of that matrix, but then we would
also need to swap σ3 with σ1, as well as v

T
3 with vT

1 . By convention, when computing
the SVD, the singular values are arranged in descending order (σ1 ≥ σ2 ≥ · · · ≥
σn), which consequently dictates the ordering of the singular vectors in U and V. This
organization is crucial for approximation tasks.

We have just stated that by convention the ordering of the singular values is in descending
order. Now we will see why this is important. Recall that matrix multiplication can be
seen as a sum of the outer products (see herefor a reminder). Thus we can write:

A = UΣVT = u1σ1v
T
1 + u2σ2v

T
2 . . .urσrv

T
r (9)

(The number r is the number of singular values- it equals the rank of A.) The term,
u1σ1v

T
1 represents the matrix u1v

T
1 weighted by σ1. And this is really significant! It tells

us that we can rewrite the matrix A as a sum of rank 1 matrices. A rank one
matrix is one where all columns are multiples of a single column, or all rows are multiples
of a single row. All matrices resulting from an outer product (column vector times row
vector) have a rank of 1.

6

https://markelic.de/a-visual-tutorial-for-matrix-multiplication

Figure 2: Visual representation of SVD, illustrating the dimensions of all matrices involved.
(Note: V∗ denotes the conjugate transpose of V; for real matrices this is simply equivalent
to the transpose.) The first column of U is associated with the first diagonal value in Σ
and the first row in VT , as highlighted in dark blue. This relationship holds for the other
entries: i.e. the second column of U is associated with the second diagonal value in Σ and
the second row in VT , and so forth, as indicated by the color coding.

Since ui and vi (for i = 1 to r) are of unit length, due to their orthonormality, the singular
values act as weights. The larger the corresponding singular value, the This is where the
ordering creates the (mathe)magic: If we sum only the first few rank 1 matrices with the
largest singular values these will be most important for reconstructing A. We can drop all
the remaining matrices with low singular values because they will add little information.
This way we may obtain a very good approximation of A using only a fraction of the
columns and rows of U, Σ and VT . This technique is used for instance in lossy image
compression.

6 U is an Eigenbasis of AAT

One more thing, before we are done. You should know that U is the basis of AAT . To see
this we find the relationship between U and AA⊤, for that we simply multiply A by its
transpose and substitute it into the formula for the SVD:

AA⊤ = (UΣV⊤)(UΣV⊤)⊤

Then we apply the transpose rule (ABC)T = CTBTAT:

AA⊤ = (UΣV⊤)(VΣ⊤U⊤)

and simplify using orthogonality. Since V is an orthogonal matrix, V⊤V = I:

AA⊤ = UΣ(V⊤V)Σ⊤U⊤ = UΣΣ⊤U⊤

7

Let Λ = ΣΣ⊤. Since Σ is diagonal, Λ is also a diagonal matrix containing the squares of
the singular values (σ2

i).

AA⊤ = UΛU⊤

This is the spectral decomposition of AA⊤, confirming that U is indeed its eigenbasis. It
is worth pausing here to note a satisfying and non-obvious fact: the nonzero eigenvalues
of AA⊤ and ATA are identical. Both equal σ2

i , the squares of the singular values. This
means that even though AA⊤ ∈ Rm×m and ATA ∈ Rn×n may have different sizes, they
share the same nonzero eigenvalues. The two symmetric matrices are in this sense two
sides of the same coin, with U and V as their respective eigenbases and the singular values
σi as the bridge between them.

7 SVD — Summary

You made it! Let’s just do a quick recap.

• The SVD is a Factorization: The SVD is a factorization method. That means it
allows us to express a matrix A as a product of other matrices. In case of the SVD
it’s a product of three special matrices, U, Σ, and VT , thus we have:

A = UΣVT (10)

• The SVD is an X-Ray These U, Σ, VT represent geometrical transformations, a
rotation, a stretch and another rotation. Thus, the SVD proves that any linear
transformation (any matrix), no matter how complex, can be simplified
into this clean three-step sequence of rotation, stretch and rotation. This
is an absolutely remarkable insight! Every matrix, regardless of its shape, is just a
combination of these three simple operations. Take a moment to let that sink in.

Thus, when we see a matrix - depending on our level of expertise - we might see a
grid of numbers, or - if we are more advanced - we might see a collection of vectors or
linear equations. But the SVD breaks it down into this elegant three-step sequence.
It is like an X-Ray that reveals this structure from a cluttered grid of numbers.

• The SVD Allows Decomposition by Relevance We can represent the product
A = UΣVT as a sum of simpler matrices, each weighted by its significance.
This is the core aspect of the SVD regarding applications: again - it allows us to
decompose a matrix into its components ordered by their relevance. This feature
serves as the foundation of PCA.

8

By summing only the most important matrices and discarding those with low weights
(the ”noise”), we can efficiently approximate our original matrix. This capability is
what enables modern data compression.

• The SVD is a Swiss Army Knife: The truly special aspect about SVD is not even
that it decomposes a matrix into its elementary parts and identifies their significance,
but that it does so for any matrix.

References

[1] Gilbert Strang. Introduction to Linear Algebra, Fifth Edition. Wellesley-Cambridge
Press, 2016.

• see here for a great video on spectral decomposition

• see here for a great video on svd

9

https://www.youtube.com/watch?v=mhy-ZKSARxI
https://www.youtube.com/watch?v=vSczTbgc8Rc

	Introduction
	Preliminaries
	The Problem to Solve
	The Strategy
	Order Matters
	U is an Eigenbasis of AAT
	SVD — Summary

