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Figure 1: Illustrating Spectral Decomposition.

1 Introduction

Diagonalization is the process that enables us to decompose certain square matrices into
the product of three matrices as we’ve covered here. However, not all matrices are diago-
nalizable, and usually, several checks are required to determine eligibility. But, when a real
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matrix is symmetric, it can always be diagonalized. This specific process is called spectral
decomposition which this article is about. Another great resource is this video.

The spectral theorem (or principal axes theorem) ([1] p. 339) provides the theoret-
ical justification for this, stating that a symmetric matrix is:

1. Unconditionally diagonalizable.
2. Diagonalizable using an orthonormal basis of eigenvectors.

Let’s look at the difference between standard diagonalization and spectral decomposition:
Standard diagonalization factors a matrix A into:

A =XAX!

where X is the eigenbasis and A is the diagonal matrix of eigenvalues. In this case, the
eigenvectors in X do not have to be orthogonal. In spectral decomposition, this simplifies
to:

S =QAQT

where Q denotes the orthonormal eigenvectors of S. Because S is symmetric, we are
guaranteed that these eigenvectors are orthonormal. This allows us to use the transpose
Q7 instead of the inverse Q™! and we’ll see why in section Let’s look at symmetric
matrices first.

2 The Symmetric Matrix
A symmetric matrix S is defined as a square matrix that equals its own transpose:
s=s"
This symmetry implies that the entries are mirrored across the main diagonal of the matrix
as shown in Figure
Two properties are particularly relevant:
e Every diagonal matrix is symmetric.
e The product AT A is symmetric for any matrix A € R™*",

We verify the second property as follows:

(ATA)T = AT(AT)T = ATA


https://www.youtube.com/watch?v=mhy-ZKSARxI

The Geometry of Symmetry: A=AT
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Figure 2: A symmetric matrix.

3 Using the Spectral Theorem to go from Diagonalization
to Spectral Decomposition

The spectral theorem ensures that for a symmetric matrix, the eigenvectors are orthogonal.
Since we can normalize these vectors to length 1, they become orthonormal.

For any orthonormal matrix Q, the following property holds:
Q'Q =1

This is because the dot product of a vector of an orthonormal matrix with itself is 1
(al'q; = 1), while the dot product between different vectors is 0 (g q; = 0). If in addition
the matrix is also square it implies that

QQ' =1

Since QTQ =1 = QQ7, it follows that Q7 = Q™. (Because by definition, a matrix B
is the inverse of A if it satisfies the two-sided relation AB = BA = 1.) Substituting this
into the diagonalization formula S = QAQ™!, we arrive at:

S =QAQ”

Why is this great? It simplifies computation significantly: we avoid the expensive calcu-
lation of a matrix inverse and instead use the transpose, which is faster and numerically
more stable.

Now that we know how the spectral decomposition is derived algebraically, let’s gain a
deeper understanding of it by looking at what actually happens geometrically during spec-
tral decomposition.



4 The Geometry of the Spectral Decomposition

Diagonalization is a sequence of geometric transformations, namely a change of basis, a
stretch and another change of basis. Because () is orthogonal, the change of basis reduces
to a rigid transformation, i.e. a transformation that preserves lengths and angles, that
means it can’t stretch or distort the space, only rotate or reflect it.

If we apply S to some vector x we can write:
Sx = Q(A(Q"x)) (1)

Let’s go through the steps, which are also illustrated in Figure

1. The first transformation (Q*x): QT acts as a rotation or reflection. What does it
do to the eigenvectors? Any idea? It aligns the eigenvectors with the standard basis.
To see why this happens, consider Q in 2 dimensions with eigenvectors q; and qs:

|
Q= a1 a2

The transpose Q" places these eigenvectors in the rows:

T _ ’(th
Q ngw

When we multiply an eigenvector by QT, we calculate:

T
T . _ 9191
Qa [qgm]

Because the eigenvectors are orthonormal, the following properties apply:

The dot product of a vector with itself is 1 (qi q; = 1).

The dot product between different eigenvectors is 0 (ngl =0). Therefore, QTq; =
[1,0]" = e;. As shown in the top right of Figure 3, QT ”snaps” the matrix’s natural
basis back to the standard basis. The circular shape remains intact because this rigid
motion does not stretch the space.

2. The stretching (A(Q"x)): Once aligned with the axes, A stretches the space along
these axes according to the eigenvalues A;. This is shown in the lower left of Figure
Every vector is stretched in the direction of the principal axes (the eigenvectors).
The resulting shape is an ellipse (or hyper-ellipsoid) where the major and minor axes
are currently aligned with the standard basis vectors.
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Figure 3:  Spectral decomposition of a symmetric matrix S. The plot visualizes the
transformation S = QAQT applied to a unit circle (each gray dot symbolizes a vector,
with only the end-point drawn). Top left: Shows the initial unit circle with standard basis
vectors e; (red/blue) and eigenvectors q; (green/purple). Top right: Application of QT
rotates the space to align the eigenvectors with the standard coordinate axes. Bottom left:
The diagonal matrix A scales the space along these axes by the eigenvalues \;, transforming
the circle into an axis-aligned ellipse. Bottom right: The final rotation Q restores the
eigenvectors to their original orientation. Note that the eigenvectors q; end on the same

span they started on, while the standard basis e; has been rotated and stretched.
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3. Rotating back (Q(A(QTx))): The final multiplication by Q rotates the stretched
shape back to the original coordinate system. The lower right of Figure [3| illustrates
this result. Look at the eigenvectors. Compare their directions with the directions
in the top left picture. They haven’t changed! Their lengths have of course, but not
their directions. This is the definition of eigenvectors: when multiplied by S, the
vector stays on its own span, only its length changes.

5 From Theory to Praxis

Here is some python code to demonstrate how to use spectral decomposition:

import numpy as np

# 1. Create a symmetric matriz S
S = np.array([[6, 2],

(2, 31D
print ("Symmetric Matrix S:\n", S)

# 2. Compute eigenvalues (L_vals) and etgenvectors (Q)
# np.linalg.eigh is optimized for Symmetric/Hermitian matrices
L_vals, Q = np.linalg.eigh(S)

# 3. Create the dtagonal matrixz Lambda
Lambda = np.diag(L_vals)

# 4. Reconstruct the matriz: S = (J @ Lambda @ (.T
S_reconstructed = Q @ Lambda © Q.T

print("\nEigenvalues (L_vals):\n", L_vals)
print ("\nOrthonormal Eigenvectors (Q):\n", Q)
print ("\nReconstructed S:\n", S_reconstructed)

# 5. Quick Verification: (.T @ () should be the Identity matriz
print("\nVerification (Q.T @ Q "= I):\n", np.round(Q.T @ Q, 10))

6 Conclusion

This is it! You now understand that spectral decomposition is the diagonalization of real
symmetric matrices, where the eigenvectors are guaranteed to be orthogonal to each other.
This reduces the change of basis to a rigid motion—a rotation or a reflection.



The spectral decomposition allows us — like an x-ray — to clearly see the internal actions
of a matrix. When applied to a shape, such as a unit sphere, the process can be summarized
as follows:

e Alignment: It first expresses all vectors of the shape in the matrix’s natural basis (its
eigenvectors). Geometrically, this is equivalent to aligning the eigenvectors with the
standard basis.

e Scaling: The shape is then stretched or compressed along these axes according to the
respective eigenvalues.

e Restoration: Finally, the shape is rotated or reflected back to the original coordinate
System.

By breaking a complex transformation into these intuitive geometric steps, spectral de-
composition provides a powerful lens for understanding how symmetric matrices operate
in higher-dimensional spaces.

7 Appendix

7.1 Why do orthogonal matrices perform rotations or reflections?

Orthogonal matrices preserve inner products. An orthogonal matrix Q is defined by the
property QTQ = I. This means that if we transform two vectors x and y, their inner
product remains unchanged:

Q%) - (Qy) = (Q¥)"(Qy) =x"Q"Qy =x"Iy =x -y
Two important implications follow from the fact that the inner product is preserved:

1. Lengths are preserved: If we consider the case where x =y, then ||Qx|| = ||x||. The
transformation does not scale the vector.

2. Angles are preserved: Since the dot product is defined as x -y = ||x||||y|| cos(¢), and
both the lengths and the dot product remain constant, the angle § between any two
vectors must also remain constant.

Because lengths and angles are preserved, the transformation induced by an orthogonal
matrix cannot stretch, squash, or bend the space. It can only move the space rigidly. In
linear algebra, such a transformation is called an isometry, which manifests as either a
Rotation: If det(Q) = 1, the orientation (handedness) of the space is preserved. Or as a
Reflection: If det(Q) = —1, the space is flipped or mirrored. In the context of spectral
decomposition, both operations ensure that the eigenvectors remain perpendicular and of
unit length during the change of basis.
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