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1 Introduction

Have you ever wondered how to unlock the secrets hidden in data but felt overwhelmed
by the math? This article provides a friendly introduction to eigenvalues and eigenvectors
which is a crucial linear algepra topic as it serves as the foundation for more advanced
methods in data science, artificial intelligence, and machine learning. For example it is



needed for understanding Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA).

Instead of just gaining intuition, we’ll explore both - core concepts and relevant math
straightforwardly. Therefore, this guide will be valuable for beginners and professionals who
seek to refresh their knowledge. By the end of this article, you’ll not only understand the
significance of eigenvalues, eigenvectors, and matrix diagonalization, but also feel confident
in applying these concepts to real-world problems.

2 Eigenvectors and Eigenvalues

One way to interpret eigenvectors is as distinct properties of a matrix. To understand
this concept, let’s first set aside matrices. Consider a single number (a scalar): you could
describe this number as even, greater than zero, or factorizable into specific components.
It’s akin to filling out a friendship book for that number.

You can apply this same approach to matrices. A matrix can be characterized by its size,
determinant, rank, and, importantly, its eigenvectors and eigenvalues.

So, what exactly is an eigenvector? An eigenvector of a matrix A is a vector x,
that when multiplied by the matrix, remains aligned along the same direction,
though its magnitude may change. This concept is illustrated in Figure
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Figure 2: Shown are four examples of matrix-vector multiplication, where the matrix is
denoted as A and the vector is indicated by an arrow. Example (a) shows an eigenvector,
because the resulting vector after multiplication still lies on the same line as before the
multiplication; only its length has changed. Examples (b), and (c) show vectors that, after
multiplication by A lie on different lines and therefore they are not eigenvectors. Example
(d) also depicts an eigenvector. The vector still lies along the same line as before, but its
direction is reversed. This is still considered an eigenvector, indicating that the according
eigenvalue (see below) is negative.

2.1 Formal Definition of an Eigenvector and Eigenvalue

We can formally define an eigenvector and eigenvalue as follows:
Ax = \x (1)

where:



o A € R™" is the matrix.

e x € R” is the eigenvector.

e )\ is a scalar (number) called the eigenvalue of A.
The interpretation of the eigenvalue is crucial:

e If A > 1, the eigenvector is stretched;

e If 0 < A < 1, the eigenvector is shrunk;

e If A\ < 0, the eigenvector is reversed;

In Figure |2 entry d) illustrates the case of a negative eigenvalue. An eigenvalue can also
be zero, which indicates that the according eigenvector lies in the null space of matrix A.
This means that when A multiplies this vector, the result is the null vector.

In summary, if we have a vector x and a scalar \ for which the equation Ax = Ax holds,
we refer to x as an eigenvector and A as the corresponding eigenvalue of A.
2.2 How to Compute the Eigenvectors and Eigenvalues of a Matrix?

To understand how to compute the eigenvectors and eigenvalues of a matrix A, we start
by manipulating the eigenvector equation Ax = Ax: This can be rewritten as:

Ax —Ax =0 (2)
Ax — M\x =0 (3)
(A —AD)x =0 (4)

Here, I denotes the identity matrix, which is a square matrix hat has all zero entries
except for ones on the diagonal. The identity matrix I must be of the same dimensions as
A meaning A must also be a square matrix. This is crucial, as it limits this method to
square matrices! In line 3| we exploit the fact that (AI)x = Ax. In line [4| we factor out x.
The term in brackets (A — AI) is a matrix we denote as B which has n columns referred
to as bj. Thus, we have Bx = 0.

A matrix multiplied by a vector can equal the zero vector only if the matrix contains linear
dependent columns. To illustrate this, we can rewrite the equation as follows:

r1b1 + x0bs ... +2,b, =0 & (5)
r1by + x9bs ...+ 2 1by_1 = —2z,by, (6)

From this representation, it is clear that a column of the matrix can be expressed as a
linear combination of the other columns, which defines linear dependence. When a matrix



exhibits linear dependence, we refer to it as singular. A singular matrix has a determinant
of 0; for a proof see [2] p. 251.

This condition implies that for the equation in line [4] to hold, the determinant of (A — AI)
must also be equal to 0. We express this as:

det(A — M) = 0 (7)

Here, det refers to the determinant. Equation [7]is fundamental for computing eigenvalues
and eigenvectors; it is also known as the characteristic equation. This equation must
be solved to determine the eigenvalues of a matrix. Once the eigenvalues are computed,
you can substitute them back into the equation (A — AI)x = 0 to find the corresponding
eigenvectors.

When solving this equation (a numerical example is provided in we will obtain a
polynomial in A of degree n, where n is the number of columns in A. Consequently, we
may find up to n different solutions for A\: Ai, A2, ...\,. Thus, a matrix with n columns
can have a maximum of n different eigenvalues.

For each eigenvalue \;, we solve (A —\;I)x = 0 to find the corresponding eigenvector. There
is always at least one eigenvector associated with an eigenvalue since every multiple of that
eigenvector will also be a solution to (A — \;I)x. Because of this property, eigenvectors
are typically normalized. We will see an example of how to compute eigenvalues and
eigenvectors in subsection, For each eigenvalue we can solve (A — A\I)x = 0 to find
the corresponding eigenvector.

It’s important to note that different \;’s may have the same value; this phenomenon is
referred to as the algebraic multiplicity of that eigenvalue. Let’s discuss a crucial piece
of information in the next chapter.

2.3 The Eigenbasis

When the algebraic multiplicity of all eigenvalues of a matrix is 1, it indicates that there are
no repeated eigenvalues (all \;s are different). In this case, all eigenvectors associated
with these eigenvalues are linearly independent!

This - the linear independence - is a a very important point because it allows us to find
as many linearly independent eigenvectors as there are columns in the matrix. Con-
sequently, we can compute a basis for the domain of the matrix. What does this mean?
The domain of a matrix is the set of all vectors that the matrix can be applied to. We
can apply an nxm matrix to vectors of dimension m, that is the dimension of the vectors
must match the number of columns in the matrix. Now all these vectors make up a vec-
tor space. In other words the vector space of the domain of the matrix contains all the
vectors that we can apply A to. A vector space can be defined by a basis. This is the



least amount of linearly independent vectors with which we can generate any vector in that
space through a linear combination of those basis vectors. In other words: any vector in
the vector space can be expressed by a linear combination of the base vectors. We say the
base vectors span the vector space. Now - the set of n linearly independent eigenvectors is
such a basis! It is the basis for the domain of the matrix A. We call this A’s eigenbasis.
In particular we can express each column of A in terms of these basis vectors. This is A’s
canonical representation. Normally we express vectors in standard basis vectors e.g. the
vector 1,2,3 is the same as 1*1,0,0 + 2*0,1,0 + 3*0,0,1. 001 etc are the standard vectors.
What happens when we express a matrix in terms of its eigenvectors? This is where the
magic happens!

Just to be complete, the collection of eigenvalues is referred to as its spectrum of the
matrix.

Again — if there are n distinct eigenvalues, we can compute n linearly independent eigen-
vectors, one for each eigenvalue. (Though every multiple of an eigenvector is also an
eigenvector, we normalize it and treat it as one distinct vector.)

As a side note, it is indeed possible for the same eigenvalue to have more than one linearly
independent eigenvector, but this only occurs when the algebraic multiplicity is greater
than 1. For instance, an eigenvalue that appears twice can have up to two linearly inde-
pendent eigenvectors associated with it. The number of linearly independent eigenvectors
linked to an eigenvalue is always less than or equal to its algebraic multiplicity; this is
known as the geometric multiplicity of that eigenvalue. A proof can be found here, or
refer to chapter 1 in [1] for further information.).

2.3.1 Proof of Linearly Independent Eigenvectors for Different Eigenvalues

For a complete proof, refer to Strang’s text on page 306 [2]. Feel free to skip this subsection
if it feels too detailed. However, for those readers seeking a detailed explanation rather
than a mere assertion, I will present Strang’s proof specifically for a 222 matrix A.

Claim:I a matrix A € R?*? has n different eigenvalues, then it has n linearly independent
eigenvectors.

Assume we have computed two distinct eigenvalues A1 and Ao for A. We also have their
normalized eigenvectors x; and xs. Our subjective is to demonstrate that these two eigen-
vectors are linearly independent.

The proof proceeds as follows: We start by assuming linear dependence (not independence)
and will show that this leads to a contradiction. Consequently, the opposite must be true,
i.e. the eigenvectors must must be linearly independent.

Two vectors are linearly dependent if there is a linear combination that gives the zero


https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Eigenspaces,_geometric_multiplicity,_and_the_eigenbasis_for_matrices

vector. Therefore, for some constants ¢;, and ¢ we can write:
c1X1 + coxo =0 (8)

If the zero vector can only be obtained by the trivial solution, where both coefficients are
zero, then the vectors x; and x2 are linearly independent. Next, we can multiply both
sides of the equation [§| by the matrix A, using the fact that Ax; = \;x;.

(AXl)Cl + (AX2)62 =0 (9)
A1X1c1 + Aaxgea = 0 (10)

Then multiply equation [§ by A2 to obtain:

C1A2X1 + coXoxo =0 (11)

We now have the equations [10] =

C1A1X1 + CoX9Xo = 1 A\9X1 + CaNaXs (12)

From this, we can subtract caoAoxXs and c¢; Aoxq to obtain:

cl)\lxl — Cl)\2X1 =0 (13)
(14)

Factoring out cyx; gives us:
clxl()\l — /\2) =0 (15)

Line can only hold true if either (A\; — A2) = 0 or ¢;x3 = 0. Here are the conclu-
sions:

e (A — A2) = 0 implies that A\; = A2. However, our initial assumption was that the
eigenvalues are distinct, so this case cannot be true.

e c1x7 = 0 indicates that either ¢; = 0 or x3 = 0. Eigenvectors cannot be zero vectors
— because if they were, the expression Ax = Ax would hold for any A and provide no
meaningful information — we can discard this scenario. Thus, it follows that only c;
can be 0.

Similary we can show that cs must also be zero.

If the linear combination cy1x1 + cox2 = 0 can only be true if the coefficients are zero, then
we conclude that the vectors are linearly independent, by definition. Consequently, the
opposite of our initial assumption (linear dependence) must be true: the eigenvectors are
indeed linearly independent, as we aimed to demonstrate.



2.3.2 A simple Example for Computing Eigenvalues and Eigenvectors

We will examine a simple example to compute the eigenvalues and eigenvectors of a 2x2
matrix A. Recall, that the determinant of a 2x2 matrix is given by the product of the
upper left and lower right element minus the product of the upper right and lower left
element. Assume:

A [g ﬂ (16)

To find the eigenvalues for A, we need to solve the equation det(A — AI). Thus, we

have:
16 9

da(FOA QEAJ>:0 (18)

Calculating the determinant gives:

This simplifies to:

(2-X2%-0 (19)
Now we can plug in the determinant into the equation [18 and obtain:
(2-X*-0=0 (20)

It’s important to note that the columns of A are linearly independent; that is, no column
can be expressed as a multiple of the other. When we solve for the eigenvalues what we
actually do is, we look for values that shift the matrix values such that A — A\I becomes
singular. In line we obtain (2 — \)2 = 0. This is a second-order polynomial in A (which
can be expanded to 22 — 4\ 4+ A?). As such it has two solutions, A\; and \o. At a glance,
we can see that the only value that makes (2 — A) zero is A = 2 Therefore, we have an
algebraic multiplicity of two, with Ay = Ay = 2.

The next step is to compute the eigenvectors corresponding to these eigenvalues. We do
this by solving the equation (A — AI)x = 0 Substituting our value for A:

(A —ADx =0 (21)

(oo 1o 2f)x=oe 2
o ol [ = @
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This leads us to the following outcome:

Ox1+1xz0=0 (24)
O0z1 +0z2 =0 (25)

From the first equation, we see that xo must be equal 0. There is no constraint on x1, so
it can take any value, t € R. We can express this relationship as follows:

-+l

Thus, any scalar multiple of [1,0]7 is an eigenvector associated with the eigenvalue 2.

We have just explored a simple example of how to compute the eigenvalues and eigenvectors
of a matrix manually. For completeness, here is how you would do it in Python:

import numpy as np

# Define the matriz A
A = np.array([[2, 1],
[0, 211

# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(A)

# Output results
print("Eigenvalues:", eigenvalues)
print("Eigenvectors:\n", eigenvectors)

#Eigenvalues: [2. 2.]
#Etgenvectors:

#[[ 1.0000000e+00 -1.0000000e+00]
#[ 0.0000000e+00 4.4408921e-16]]

Each column in the array ”eigenvectors” will contain an eigenvector, such as [1,0]7 and
[—1,0]7. These vectors lie on the same line and are consistent with our manually computed
solution that the eigenvector is a scalar multiple of [1,0]%.

2.3.3 Summary of Key Points

The key points from the above discussion are:

e An eigenvector of a matrix A is a vector that remains on the same line after multi-
plication by A.



e There is at least one normalized eigenvector value associated with an eigenvalue.
e There is always one eigenvalue for an eigenvector.
e The eigenvalue acts like a scaling factor for the eigenvector.

e Eigenvalues are computed by solving det(A — AI) = 0, which is known as the char-
acteristic equation of the matrix A. For each eigenvalue, we substitute its value into
(A — AMI)x = 0 to obtain the associated normalized eigenvector x.

e There can be at most as many distinct eigenvalues as there are columns in A. How-
ever, some eigenvalues may repeat; which is referred to as the algebraic multiplicity
of an eigenvalue.

e When there are no repeated eigenvalues (i.e. all \; are distinct), the corresponding
eigenvectors are guaranteed to be linearly independent. In this case, there is one
unique eigenvector associated to each eigenvalue.

e All the above holds true only for square matrices.
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