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ABSTRACT

In this contribution, we introduce a new state estimation filter

for nonlinear estimation and sensor fusion, which we call cen-

tral difference information filter (CDIF). As we know, the ex-

tended information filter (EIF) has two shortcomings: one is

the limited accuracy of the Taylor series linearization method,

the other is the calculation of the Jacobians. These shortcom-

ings can be compensated by utilizing sigma point information

filters (SPIFs), e.g., the unscented information filter (UIF),

which uses deterministic sigma points to approximate the dis-

tribution of Gaussian random variables and does not require

the calculation of Jacobians. As an alternative to the UIF, the

CDIF is derived by using Stirling’s interpolation to generate

sigma points in the SPIFs architecture, which uses less pa-

rameters, has lower computational cost and achieves the same

accuracy as UIF. To demonstrate the performance of our al-

gorithm, a classic space vehicle reentry tracking simulation is

used.

Index Terms— Nonlinear estimation, multiple sensor fu-

sion, target tracking, sigma point filters, central difference in-

formation filter.

1. INTRODUCTION

Control systems can be more accurate, complete and robust

by using fused information from multiple sensors. Therefore,

multiple sensor fusion techniques have been widely studied in

many research fields, i.e., robot navigation, surveillance, and

intelligent vehicles [1, 2, 3]. Recently, the information filter

(IF), which is the dual of the Kalman filter (KF), has attracted

much attention for multiple sensor fusion. Both the IF and

the KF represent distribution of random state variables with

Gaussians. However, in contrast to moment parametrization

as done in the KF, the IF uses an information matrix and an

information vector to represent the Gaussians. This difference

in parameterization makes the IF superior to the KF concern-

ing multiply sensor fusion, i.e., computations are simpler and

no prior information of the system state is required [1].

This work has been supported by the EU project Garnics under contract

No. 247947 and the EU project PACO-PLUS under contract No. 027657.

In the case of nonlinear estimation problems, an extended

version of the IF can be obtained by using the first order

term of the Taylor series expansions of the nonlinear func-

tions, which is called extended information filter (EIF). This

approximation can introduce large errors when the system

model is highly nonlinear, and the higher order terms of Tay-

lor series are important [4]. To address this issue, the un-

scented information filter (UIF) has been proposed by Kim [2]

and Lee [1]. Kim developed the UIF by using minimummean

square error estimation. By contrast, Lee’s UIF algorithm is

derived by embedding statistical linear error propagation into

the EIF architecture. Although their methods are different, re-

sults are essentially identical [1] [2]. The UIF uses a number

of deterministic sigma points to capture the true information

matrix and information vector, which can be accurate up to

the second order of any nonlinearity. However, three param-

eters (α,β ,κ) are needed to be defined first in UIF, which

depend on the system models. As shown in [1], the UIF is

superior to the EIF not only in terms of estimation accuracy

but also concerning the convergence speed for nonlinear es-

timation and multiple sensor fusion. However, the choice of

system parameters (α,β ,κ) can affect the filter’s estimation

precision.

In this paper, we employ Stirling’s interpolation in the IF

for nonlinear estimation and multiple sensor fusion problems.

Stirling’s interpolation replaces the unscented transform in

the UIF algorithm architecture. As proved in [4], Stirling’s

interpolation based central difference Kalman filter (CDKF)

has the same or superior performance as the unscented trans-

form based unscented Kalman filter (UKF), with one advan-

tage over UKF: the Stirling’s interpolation only needs one

single parameter which is the interval size h, whereas the un-

scented transform needs three [5]. Therefore, our motivation

is combining Stirling’s interpolation with the IF, which lead

to the central difference information filter (CDIF). As shown

in our simulation experiment, the CDIF not only inherits the

simplicity of the IF for multiply sensor fusion, and has the

same accuracy as the UIF, but also has lower computational

cost.

The paper is organized as follows: in Section 2, Stirling’s

interpolation method is introduced. Section 3 presents our

CDIF algorithm for nonlinear estimation and multiple sensor
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fusion. The simulation results of target tracking are presented

and discussed in Section 4. Finally, the work is concluded in

Section 5.

2. STIRLING’S INTERPOLATION

Stirling’s interpolation was used with a Kalman filter in the

literature for a while, which is called CDKF [5, 4]. It uses a

symmetric set of 2L+1 sigma points to approximate nonlin-

ear functions, whereas the EKF uses the Taylor series. The

advantage of the Stirling’s interpolation is that the calcula-

tion of Jacobians is not required, and can be accurate up to

the second order of any nonlinearity. In case of Gaussian dis-

tributions of the system variables, the mean and covariance

can be represented by those sigma points. As we mentioned

in Section 1, the IF is a dual filter of the KF, such that the

information vector and matrix also can be derived by those

sigma points. In this section, we first show how the mean

and covariance are derived using Stirling’s interpolation, then

the information vector and matrix are obtained from the mean

and covariance.

The 2L+1 prior sigma points used in Stirling’s interpola-

tion are given by the prior mean x̂ plus or minus the columns

of the scaled square root of the prior covariance matrix Px [4]:

χi =











x̂, i= 0

x̂+(h
√
Px)i, i= 1, · · · ,L

x̂− (h
√
Px)i, i= L+1, · · · ,2L

(1)

where h is a scaling parameter and L is the dimension of the

state x̂. The subscript i indicates the ith column of the matrix.

A set of the posterior sigma points can be derived by propa-

gating these prior sigma points through the nonlinear function

g: Zi = g(χi). Furthermore, the estimations of mean ẑ, co-

variance Pz and cross-covariance Pxz are obtained as follows:

z≈
2L

∑
i=0

w
(m)
i Zi (2)

Pz ≈
L

∑
i=1

w
(c1)
i (Zi−Zi+L)(Zi−Zi+L)

T

+
L

∑
i=1

w
(c2)
i (Zi+Zi+L−2Z0)(Zi+Zi+L−2Z0)

T (3)

Pxz ≈
√

w
(c1)
1 Px(Z1:L−ZL+1:2L)

T (4)

The corresponding weights for the mean and covariance

are defined as:

w
(m)
0 = h2−L

h2

w
(m)
i = 1

2h2
,

w
(c1)
i = 1

4h2
,

w
(c2)
i = h2−1

4h4
, i= 1, · · · ,2L

(5)

As proved in [4], if the random variables obey a Gaussian

distribution, the optimal value of h is
√
3. Stirling’s interpola-

tion only depends on one parameter which is the interval size

h in contrast to three parameters (α,β ,κ) which are required

in unscented transform. This makes Stirling’s method simpler

and easier adjustable.

3. CENTRAL DIFFERENCE INFORMATION FILTER

In this section, we present our CDIF framework which is

developed by embedding Stirling’s interpolation into the UIF

structure. To achieve this, the sigma points are derived by

Stirling’s interpolation instead of the unscented transform.

The algorithm includes three steps: prediction, measurement

update and global information fusion.

3.1. Prediction

Here we consider the discrete-time nonlinear dynamic sys-

tem:

xk+1 = f (xk,wk), (6)

where xk is the state vector of the system at time step k, and

wk ∼ N (0,Qk) is the zero mean Gaussian noise.

First, the state vector is augmented with the noise vari-

able and the corresponding augmented covariance matrix is

derived by

x
aw
k =

[

xk
wk

]

, P
aw
k =

[

Pk 0

0 Qk

]

(7)

A symmetric set of 2L+ 1 sigma points is generated by

using (1)

χaw
i,k =











x
aw
k , i= 0

x
aw
k +(h

√

P
aw
x )i, i= 1, · · · ,L

x
aw
k − (h

√

P
aw
x )i, i= L+1, · · · ,2L

(8)

where each sigma point χaw
i,k contains the state and noise vari-

able components

χaw
i,k =

[

χx
i,k

χw
i,k

]

(9)

These sigma points are further passed through the nonlinear

function (6), such that the predicted sigma points for the dis-

crete time k+1 are derived

χx
i,k+1|k = f (χx

i,k,χ
w
i,k) (10)

Finally, the first two moments of the predicted state vector are

obtained by linear regression of the transformed sigma points

xk+1|k =
2L

∑
i=0

wm
i χx

i,k+1|k (11)
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Pk+1|k =
L

∑
i=1

w
(c1)
i (χi− χi+L)(χi− χi+L)

T

+
L

∑
i=1

w
(c2)
i (χi+ χi+L−2χ0)(χi+ χi+L−2χ0)

T

(12)

As stated in Section 1, the information matrix and informa-

tion vector are the dual of the mean and covariance, so that

the predicted information matrix Yk+1|k and the information

vector yk+1|k are derived as:

Yk+1|k = (Pk+1|k)
−1 (13)

yk+1|k = Yk+1|k xk+1|k (14)

3.2. Measurement update

The measurement function of the nonlinear system is defined

as

zk = h(xk)+ vk, (15)

where zk is the measurement and vk ∼ N (0,Rk) is the Gaus-
sian noise of the measurement.

The sigma points used for the measurement update are

derived as:

χi,k+1|k =











xk+1|k, i= 0

xk+1|k+(h
√

Pk+1|k)i, i= 1, · · · ,L
xk+1|k− (h

√

Pk+1|k)i, i= L+1, · · · ,2L
(16)

The predicted measurement points are obtained by transform-

ing the sigma points through (15)

Zi,k+1|k = h(χi,k+1|k) (17)

Furthermore, the mean and cross-covariance are derived by

zk+1|k =
2L

∑
i=0

wm
i Zi,k+1|k (18)

Pxz
k+1|k =

√

w
(c1)
1 Pk+1|k(Z1:L−ZL+1:2L)

T (19)

Both Eq. (16) and Eq. (19) require the calculation of
√

Pk+1|k, so we only need calculate it once for each time step.

Finally, the measurement update of the information vector

and the information matrix for sensor are derived as:

yk+1 = yk+1|k+φk+1, (20)

Yk+1 = Yk+1|k+Φk+1, (21)

where φk+1 and Φk+1 are information contributions for the

information vector and matrix respectively, which can be de-

rived by

φk+1 = Yk+1|kP
xz
k+1|kR

−1
k+1[zk+1− zk+1|k+(Pxz

k+1|k)
T yk+1|k]

(22)

Φk+1 = Yk+1|kP
xz
k+1|kR

−1
k+1(P

xz
k+1|k)

TYk+1|k (23)

The mathematic derivation of Eq. (22) and Eq. (23) can be

found in [1, 2].

3.3. Global information fusion

In case of multiple sensors, e.g., N, where the measurement

noises are uncorrelated between the sensors, the measurement

update for the information fusion is simply expressed as a

linear combination of the local information contribution terms

by:

yk+1 = yk+1|k+
N

∑
i=1

φi,k+1 (24)

Yk+1 = Yk+1|k+
N

∑
i=1

Φi,k+1 (25)

4. SIMULATION EXPERIMENTS

To demonstrate the performance of CDIF, here we consider

a classic space vehicle reentry tracking problem, which was

used in [1, 6, 7]. Two radars, which measure range and bear-

ing, are used for tracking a high speed vehicle.

The state space of the filter consists of the position (x1
and x2), the velocity (x3 and x4) and a parameter related to the

aerodynamic force x5. As described in [6], the vehicle state

dynamics for the discrete case are given by

x1(k+1) = x1(k)+∆tx3(k)
x2(k+1) = x2(k)+∆tx4(k)
x3(k+1) = x3(k)+∆t(D(k)x3(k)+G(k)x1(k))+w1(k)
x4(k+1) = x4(k)+∆t(D(k)x4(k)+G(k)x2(k))+w2(k)
x5(k+1) = x5(k)+∆tw3(k),

(26)

where w1(k), w2(k), w3(k) are Gaussian process noises, D(k)
is the drag-related force, G(k) is the gravity-related force, and
∆t = 0.1s is the sampling time. The force terms are given by

D(k) = β (k)V (k)exp
{

R0−R(k)
H0

}

G(k) =− Gm0

R3(k)
,

(27)

where β (k) = β0 exp{x5(k)}, R(k) =
√

x21(k)+ x22(k) is the

distance between the vehicle and the earth center, andV (k) =
√

x23(k)+ x24(k) is the vehicle’s speed. The constants in (27)

are defined as: β0=−0.59783,H0 = 13.406,Gm0 = 3.9860×
105,R0 = 6374. The discrete process noise covariance in our

simulation is defined by

Q(k) = diag(2.4064×10−5
,2.4064×10−5

,10−6), (28)

where diagmeans the diagonal matrix. The vehicle is tracked

by radars which are located at (xs,ys), where s= 1,2, and the

measurement model is

rs(k) =
√

(x1(k)− xs)2+(x2(k)− ys)2+ er,s(k)

θs(k) = tan−1
(

x2(k)−ys
x1(k)−xs

)

+ eθ ,s(k),
(29)

where [er,s(k),eθ ,s(k)]
T ∼ N (0,Rs(k)) is the measurement

noise. In the simulation, the radars are located at (x1,y1) =
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Table 1: Means and standard deviations of RMSE values of

the position and average run time in 100 Monte Carlo runs of

the reentry tracking problem

Method E[RMSE] STD[RMSE] Average run time(s)

UIFa 0.0083 0.0007 2.0488

CDIFa 0.0083 0.0007 2.0422

UIFb 0.0060 0.0005 2.0575

CDIFb 0.0060 0.0005 2.0496

(6474,0) and (x2,y2) = (6475,−30), and their measurement

noise variances are

R1(k) = diag((1×10−3)2,(1.7×10−4)2)
R2(k) = diag((2×10−3)2,(1.7×10−4)2).

(30)

The initial true state and the covariance of the vehicle are

given by

x0 = [6500.4,349.14,−1.8093,−6.7967,0.6932]T

P0 = diag(10−6
,10−6

,10−6
,10−6

,0),
(31)

and the prior state and the covariance are given by

x̂0 = [6500.4,349.14,−1.8093,−6.7967,0]T

P̂0 = diag(10−6
,10−6

,10−6
,10−6

,1),
(32)

which are same as used in [6].

The time step ∆t in the (26) is set to 0.1s, and measure-

ments from both radars are received during each step, such

that the observation frequency of two radars is 10Hz.

The results of the simulation are derived from 100 Monte

Carlo simulations, which are shown in Table 1, where CD-

IFa and UIFa consider only the measurements from the first

radar, and CDIFb and UIFb consider measurements from

both radars. The results indicate that by fusing more sensor

information the CDIF and UIF can achieve much more ac-

curate results, i.e., the mean and the standard deviation of

the root mean square error (RMSE) of the position decrease,

whereas the additional computational cost for fusion is very

low (0.42% for UIF and 0.36% for CDIF in this simulation).

Furthermore, the CDIF runs slightly faster than the UIF in the

simulation, although they have almost identical RMSE over

time, which is shown in Fig. 1.

5. CONCLUSION

In this paper, a new central difference information filter

(CDIF) algorithm for multiple sensor fusion and target track-

ing was presented. Stirling’s interpolation employed in the

CDIF only depends on one parameter (interval size) in con-

trast to three parameters which are required in the unscented

transform, which makes the CDIF simpler, faster and easier
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Fig. 1: The RMSE error of x1 and x5 against the time.

adjustable than the UIF. A vehicle reentry tracking appli-

cation is employed to demonstrate the performance of our

algorithm. The simulation results show that the new method

not only inherits the simplicity and accuracy of the UIF, but

also has lower computational cost for multiple sensor fusion.
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