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Abstract— Lane detection and tracking is still a challenging
task. Here, we combine the recently introduced Statistical
Hough transform (SHT) with a Particle Filter (PF) and show
its application for robust lane tracking. SHT improves the
standard Hough transform (HT) which was shown to work
well for lane detection. We use the local descriptors of the
SHT as measurement for the PF, and show how a new three
kernel density based observation model can be modeled based
on the SHT and used with the PF. The application of the former
becomes feasible by the reduced computations achieved with the
tracking algorithm. We demonstrate the use of the resulting
algorithm for lane detection and tracking by applying it to
images freed from the perspective effect achieved by applying
Inverse Perspective Mapping (IPM). The presented results show
the robustness of the presented algorithm.

I. INTRODUCTION

Vision based street lane detection and tracking is an

important factor for Driver Assistance Systems, which can

reduce the risk of car accidents. Various lane detection

and tracking methods have been proposed [1], [2], [3],

[4], [5], but situations like occlusions, strongly differing

illuminations, and unmarked or partly marked lanes are still

challenging [4], [6].

In this paper, we combine the recently introduced Statis-

tical Hough transform (SHT) [7] with a Particle Filter (PF)

[8], [6] and show its application for robust lane tracking.

The SHT overcomes shortcomings of the standard Hough

transform (HT), which was proved to be a powerful tool

for lane detection [5], [3], [6]. Although the standard HT

is easy to implement and gives robust results for dashed

lane marking, it is usually applied to edge images [5], [3],

and imperfections in the edge detectors cause errors in the

accumulator histogram of the standard HT. In addition, the

limited number of edge pixels causes the histogram to be

sparse [7], which makes it non–trivial to find appropriate

peaks in it, which indicate lines in an image. SHT is a multi–

kernel density based transform, which in contrast to the

standard HT, uses all available pixels and their gradients as

observation data to give a continuous probability distribution

of the HT variables. A similar idea was presented in [9],

where an elliptical–Gaussian kernel was used to model the

probability distribution of HT variables, however, the edge

detector is still required.
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We propose to combine the SHT with a PF for lane

tracking which we find to be mutually beneficial. First, due

to the statistical nature of both SHT and PF, the PF can use

local descriptors of SHT as measurement, and a new multi–

kernel density based observation model can be modeled from

SHT. Second, the tracking algorithm reduces the necessary

computations. To demonstrate its use for lane detection and

tracking, we implement a three kernel density based observa-

tion model for both SHT and PF, and apply it to images freed

from the perspective effect using a transformation known

as Inverse Perspective Mapping (IPM) [1], [10]. The whole

algorithm can be seen in Fig. 4.

We test our algorithm on the DRIVSCO dataset [11],

which is a freely available collection of real driving images,

containing various scenes, including occluded lanes, blurred

images and unmarked or partly marked streets. Although

we are currently using a simple straight line model, the

experimental results show that our tracking algorithm can

successfully handle these difficult situations. More complex

lane models, such as a parabolic [12] or a circular model

[13], can also be used within our suggested framework.

Our algorithm comprises two steps, first an initial de-

tection of the lanes, and second their subsequent tracking.

Thus, the paper is organized as follows: Section II introduces

the lane detection algorithm including a description of the

IPM transform, our lane model, and the SHT algorithm.

Section III introduces the lane tracking algorithm using a

Particle Filter with our new observation model from the SHT.

Results and analysis are given in Section IV and the work

is concluded in Section V.

II. LANE DETECTION USING STATISTICAL HOUGH

TRANSFORM

As additional constraint to our lane model introduced in

Section II-D, we assume lanes are parallel to each other.

But this information is lost in the original images due to the

perspective effect, e.g. see Fig. 1a. We here recover it using

Inverse Perspective Mapping (IPM) [10], [1], which under a

flat ground assumption, transforms the image to a top view

of the scene. As shown in Fig. 1b, the parallel lane markings

appear parallel in the IPM image. Thus, we first apply IPM

to the original image, and then run SHT on the resulting IPM

image for lane detection.
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(a) (b)

Fig. 1: (a) An image from the DRIVSCO dataset. Parallel

lane markings are not parallel. (b) the transformed image

after applying IPM shows a top-view of the scene and the

lane markers appear nearly parallel.

A. IPM transform

IPM is a well known algorithm [10], [1], which can

remove the perspective effect, based on the flat ground

hypothesis with known extrinsic and intrinsic parameters

of the camera. It remaps pixels from the original image to

the other image that has a different coordinate system. This

remapping procedure can be done by a fast lookup table

with a distortion compensation [10]. As the resolution for

near and further object is different in the original image, an

interpolation process is needed in the IPM algorithm. The

resulting image is shown in Fig. 1b, which is a top view

image of scene with a cubic interpolation. The lanes looks

parallel and the width between lanes becomes near constant.

B. Lane Model

We assume that the lanes nearby the car appear to be

straight, thus we use a simple straight line equation as our

lane model, which defined in:

ρ = xcosθ + ysinθ , (1)

where x and y correspond to the horizontal and vertical image

coordinates, and ρ and θ are the line parameters.

C. Statistical Hough Transform

The Statistical Hough transform (SHT) introduced in [7],

unlike the standard Hough transform, works on intensity

images and uses a multiple kernel density to describe the

distribution of the Hough variables (ρ,θ), thus no edge

preprocessing is required.

In the SHT algorithm, the distribution of Hough variables

is determined by the position of each pixel in the image

given by xi and yi, and the orientation of the pixel θi, where

i ∈ [0,1, . . . ,N] and N denotes the total number of pixels in

a given image. We refer to the observation space for these

three features xi, yi, and θi as Qxyθ . Given the latter, the

distribution of Hough variables in SHT is p(ρ,θ |Qxyθ ), and

we use Gaussian kernels in our experiment to model this

distribution.

(a)

(b) (c)

Fig. 2: (a) Statistical Hough transform histogram, (b) the

red color lanes correspond to the top 10 peaks in the SHT

histogram, (c) the yellow color lanes are lane detection

results using a known lane model.

1) Gaussian Kernel Density Model: The probability dis-

tribution p(ρ,θ ,x,y|Qxyθ ) can be written according to Bayes

rule:

p(ρ,θ ,x,y|Qxyθ ) = p(ρ|x,y,θ ,Qxyθ ) · p(x,y,θ |Qxyθ ) (2)

In (2), the first probability p(ρ|x,y,θ ,Qxyθ ) is determined

by (1), and the second probability p(x,y,θ |Qxyθ ) can be

modeled by a Gaussian kernel density function, thus (2)

becomes:

p(ρ,θ ,x,y|Qxyθ ) = δ (ρ −xcosθ −ysinθ)
1

N
∑

i

KxKyKθ , (3)

where δ is the Dirac delta function, Kx = N (xi,σ
2
xi
), Ky =

N (yi,σ
2
yi
) and Kθ = N (θi,σ

2
θi
) are Gaussian kernels, σ2

xi
,

σ2
yi

and σ2
θi

are variances of xi, yi, and θi, respectively. The

distribution p(ρ,θ |Qxyθ ) can be obtained by integrating (3)

over (x,y):

p(ρ,θ |Qxyθ ) =
1

N
∑

i

Kθ ·Gi(ρ,θ), (4)
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(a) (b) (c)

Fig. 3: (a) sampling particles, (b) resampling the weighted

particles using Stratified Resampling, (c) update the param-

eters of the lane model.

where

Gi(ρ,θ) =
1

√

2π(σ2
xi

cos2θ +σ2
yi

sin2θ)

exp

(

−(ρ − xicosθ − yisinθ)2

2(σ2
xi

cos2θ +σ2
yi

sin2θ))

)

(5)

The detailed description of (5) can be found in paper [7].

2) Statistical Hough Transform Algorithm: The algorithm

for computing SHT is summarized as follows:

1. Calculate the orientation of the image gradient for each

image pixel θi and its magnitude ∆Ii.

2. Compute the variance of the observations: σ2
xi

, σ2
yi

and

σ2
θi

. In our experiment, we set σ2
xi

= 1, σ2
yi

= 1 and

σ2
θi

= σ2/∆I2
i , where σ2 = 1. Here we can see that the

bandwidth of kernel Kθ depends on the magnitude of

the gradient.

3. Build a 2D histogram based on a fine grid determined

by θ ∈ [−π/2,π/2] and ρ ∈ [−ρp,ρp], where ρp =
w
2

cos(atan( h
w
))+ h

2
sin(atan( h

w
)), and w and h are the

width and height of the image, respectively. Then

compute the probability for every grid entry (θ ,ρ)
according to (4).

4. Find the peaks in the histogram by a threshold T . We

set T = 0.1 in the experiment.

The result SHT histogram is shown in Fig. 2a. After

thresholding it, we select the ten entries with highest proba-

bility which correspond to the ten potential lanes as shown

in Fig. 2b.

D. Lane Detection with SHT

To further specify which of these lines obtained from ap-

plying the SHT algorithm indeed corresponds to the correct

lanes, we check the following additional constraints:

• Street lanes are nearly parallel to each other, such that

θl ≈ θr ≈ θm, where θl , θr and θm are the gradient angle

of left, right and middle lane respectively.

• The widths between parallel lanes are nearly equal:

|Dlm| ≈ |Drm|, where |Dlm| is the distance between left

Fig. 4: The flow chart of our lane detection and tracking

algorithm.

and middle lane, and |Drm| is the distance between right

and middle lane.

Based on these assumptions, we obtain lane detection

results as shown in Fig. 2c.

III. LANE TRACKING USING THE PARTICLE FILTER

The SHT is computational expensive, as it works on all

pixels of an image, thus it is not suitable to run it on every

frame. After initial detection based on SHT, we therefore use

the Particle Filter to track the detected lanes and to update

the parameters of the lane model, which greatly reduces the

computational time.

A. Particle Filter

In paper [6], the author used a Particle Filter to track the

control points of cubic spline. A similar idea is used here,

however, we track pixels that might belong to a lane, which

is represented by the particles of the Particle Filter.

In the Particle Filter algorithm, first we need to initialize

the particles set, and then predict the particles in the current

time frame. Finally we have to resample the particles based

on their weights, which uses the observation model. The

algorithm is summarized in Fig. 4. In our experiment, there

are multi–lanes on the road. For each lane, the lane model

is different, thus we need to initialize, sample and resample

particles separately for each lane model.

1) Initialization of the Particles: After the SHT ran on the

first frame, the parameters of lane models can be obtained,

but we do not know where the lane markers are. The particles
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(a) frame 367 (b) frame 405 (c) frame 451 (d) frame 726 (e) frame 1117

(f) frame 367 (g) frame 405 (h) frame 451 (i) frame 726 (j) frame 1117

Fig. 5: Tracking results from different scenes in consecutive frames. Top: particles in the IPM image, bottom: particles

projected back to the original image. (a) and (f) dashed lines, (b) and (g) occluded by car, (c) and (h) non–flat ground plane,

(d) and (i) blurred image, (e) and (j) partly marked lanes.

in the first step are selected on the straight lanes, which are

defined by (1), then the state vector can be defined by Xt =
(X1

t ,X2
t , · · · ,Xn

t ) where X i
t = [xi

t ,y
i
t ]

T is the 2D coordinate of

particle i in the image, n is the number of particles.

2) State prediction: Assuming the change of lane bound-

ary positions for two consecutive frames is small, a normal

distribution can be used to model the state transition of

particles as:

p(Xt |Xt−1) = N (AXt−1,Σ), (6)

where function N is a normal distribution, the matrix A

is the identity matrix as we assume smooth changes of the

lane boundaries, and Σ is the covariance, which handles

the difference of lane boundaries between two consecutive

frames.

3) Observation Model: The observation space Qxyθ in

the SHT describes the local feature in the image. It also

can be used in the Particle Filter. For the ith particle, the

measurement is zi
t = (xi

t ,y
i
t ,θ

i
t ). The observation model can

be derived from (4):

p(zi
t |X

i
t ) = Kθt

·Gi(ρt ,θt), (7)

where (ρt ,θt) are lane parameters of the current frame

which are unknown, but we assume that the lane boundaries

smoothly change between consecutive frames, thus (ρt ,θt)≈
(ρt−1,θt−1). The observation model (7) becomes:

p(zi
t |X

i
t ) = Kθt−1

·Gi(ρt−1,θt−1) (8)

4) Resampling: Stratified Resampling [8] is used to re-

sample particles based on their weights. We use it because

Stratified Resampling has a lower sampling variance, and is

suitable to track multiple hypotheses [14]. For every particle,

we can compute its weight using the observation model (8):

wi
t = η p(zi

t |X
i
t ), (9)

where η is a normalization factor, which makes sure that the

sum of weights is one. After resampling, those particles that

have high weight will be kept [14], and the others that have

lower weight will be removed from the particle set Xt .

B. Tracking

The parameters of the lane model are updated frame by

frame. We run a simplified version of SHT on the particle

sets to update the parameters of the lane model. Due to the

smooth change assumption of the lane boundary between

two consecutive frames, we define the fine grid in the SHT

histogram as [ρt−1 − δρ ,ρt−1 + δρ ] and [θt−1 − δθ ,θt−1 +
δθ ], where δρ = 10 and δθ = 10π\180 in our experiment

(see Section IV). As before, the new lane model parameters

can be obtained by detecting the peak in this histogram.

IV. RESULTS

To demonstrate the performance of our algorithm, we

apply it to the DRIVSCO dataset which contains a variety

of challenging situations like high-curvature roads, partly

marked and occluded lanes, etc. Our algorithm succeeds in

tracking 837 images of this dataset, showing its robustness

with respect to the difficult situations. Some tracking results

are shown in Fig. 5 and a movie of the entire processed

sequence is available at [15]. The upper part in Fig. 5 shows

the lane tracking results in the IPM images (particles in red

and the assigned line in yellow), and the lower part shows

that the particles are back projected onto the original image,
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mainly for the readers convenience. Note that the particles

appear unevenly distributed in the lower part of original

image, i.e. it seems like there are few particles close to the

image bottom but clusters towards the middle of the image.

This is not really the case, as can be seen from the IPM

images, but induced by the perspective effect.

In Fig. 5b, the left lane is occluded by the car, however,

the lane hypothesis given by the particles correctly indicates

the lane. This is possible because the SHT relies on local

observations of pixel position and gradient. If one of these is

absent, the SHT probabilities for the Hough variables can still

be computed (and thus particle weights determined) based on

the remaining observations. Concerning Fig. 5b, this means

that although no or random gradient information is available

on the part where the lane is occluded by the car, the particle

position will be considered as main factor on weight. The

same reason holds true for the blurred image as shown in

Fig. 5d. Similarly if the tracked lane is dashed, which is

the case for all presented results but Fig. 5d, the particles

that are between two line segments, and thus do not have

access to reliable gradient information, can still contribute to

the lane hypothesis via the position information. In addition,

our tracking algorithm can also handle the unmarked case,

as shown in Fig. 5e.

The SHT is computationally expensive, but our idea to

combine it with a Particle Filter allows its use for practical

applications. Currently it takes 1.1s per frame for tracking,

however, we were interested in demonstrating the principle

use of the proposed algorithm, and it was implemented in

a non-optimized way in Matlab on a conventional INTEL

Core 2 Duo (2.2Hz) machine. Because all particles can be

computed independently from each other, the algorithm can

easily be parallelized, and a more efficient implementation,

e.g. using the GPU, will lead to a much faster frame rate.

During the initial lane detection, the entire image frame

must be processed which at the moment takes 700s. This

is slow, however, occurs only once for the very first frame

and can be improved by simply using the conventional HT

for initializing the tracking process.

V. CONCLUSION

In this paper we presented our idea to combine the recently

introduced Statistical Hough Transform and the Particle

Filter, and showed its application for lane detection and

tracking on IPM images. The algorithm was tested on the

DRIVSCO dataset and 837 frames were successfully tracked.

Furthermore, the algorithm was very robust concerning chal-

lenging scenes.

We showed that the combination of the SHT with a PF is

mutually beneficial in the sense that: a) the SHT descriptors

can conveniently be used as measurements for the PF; b) the

tracking makes the application of the expensive SHT feasible

by considerably reducing computation time. As discussed

before, the current implementation works at a frequency of

1Hz, but is not optimized and implemented in Matlab. Since

the algorithm can be parallelized, it is able to work at a much

higher frequency. During the initialization, the advantage

of the reduced computation due to the tracking is yet not

available and using SHT to process an entire image is slow.

This can be accelerated by using the original HT once for

the very first frame.

To demonstrate our idea, we here used a straight lane

model. Note that the algorithmic framework is not limited

to this and more sophisticated models can be used equally

well. In the future we will optimize the implementation of

the algorithm and use it with a parabolic or a circular lane

model.
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