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Abstract

In order to develop a fast walking behavior for a specific quadruped robot, a
controller consisting of a neural network is generated by using Artificial Evo-
lution. To achieve this an ODE-based physical simulation of the robot is built.
The evolved controller is verified by transferring it successfully to hardware.
Afterwards it is simplified and examined to find out how the observed behav-
ior is accomplished. This is driven by the desire to discover possible principles
underlying walking in general. The outcome of this work is a comparably fast
gait produced by a small controller, concerning the amount of neurons and
synapses of the network.



3

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Die Richtlinien des Instituts für Studien- und Diplomarbeiten habe ich gelesen und an-
erkannt, insbesondere die Regelung des Nutzungsrechts

Koblenz, den 28.05.2005 Unterschrift



4



Contents

1 Introduction 9

1.1 The Control of Legged Machines . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Historical milestones . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.2 A Classification of Computer-Based Approaches . . . . . . . . . 12

1.2 Applying the Behavior-Based Approach . . . . . . . . . . . . . . . . . . 15

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Methods 17

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Behavior and Dynamical Systems Approach . . . . . . . . . . . 18

2.1.3 The Neurocontroller . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Neuron Model and Networks . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Artificial Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The Algorithm ENS3 . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Artificial Evolution with ISEE . . . . . . . . . . . . . . . . . . . 24

2.4 The Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5



6 CONTENTS

2.4.2 Physical and Simulated Robot . . . . . . . . . . . . . . . . . . . 27

2.5 Embedding the Neurocontroller . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Neurocontroller and German Team Software . . . . . . . . . . . 32

2.5.2 Pre- and Postprocessing . . . . . . . . . . . . . . . . . . . . . . 32

3 Evolving the Neurocontroller 35

3.1 Features Of Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 General Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Empty Leg Networks and CPG . . . . . . . . . . . . . . . . . . . 38

3.3.2 Imposed Leg Networks and CPG . . . . . . . . . . . . . . . . . 40

3.3.3 Imposed Leg Networks and no Contact Sensors . . . . . . . . . . 43

3.3.4 Connection Module and Fixed Legs . . . . . . . . . . . . . . . . 44

4 Analysis 49

4.1 The Neurocontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Simplifying the Neurocontroller . . . . . . . . . . . . . . . . . . 50

4.1.2 Verification of the Simplified Neurocontroller . . . . . . . . . . . 51

4.2 Analysis of the Simplified Neurocontroller . . . . . . . . . . . . . . . . . 54

4.2.1 Foreleg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Hind Legs and Sensory Input . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Impact on CPG . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Improving the Neurocontroller . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Path Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Stride Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



CONTENTS 7

4.4 The Final Neurocontroller and Speed . . . . . . . . . . . . . . . . . . . . 69

5 Discussion 75

5.1 Artificial Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The Neurocontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 The CPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Acknowledgment 81

Bibliography 82



8 CONTENTS



Chapter 1

Introduction

The motivation for this work is twofold. One reason is the desire to find out more about the
principles underlying walking. It is believed that this way one could gain more insights
about the functioning of brains and use this knowledge to build an intelligent machine.
This is the long-term goal setting the general frame of this work. The second reason is
more pragmatic. Although many legged robots have been built, there is still no satisfactory
device available to control them, concerning speed, adaptivity, and energy-consumption.
Honda’s robot Asimo, which represents state-of-the-art moves with about 2 km/h. Its bat-
teries last about 20 minutes and the stairs it climbs must be especially prepared [wal]. This
lack of a truly autonomous and adaptive walking behavior heavily narrows the possible ar-
eas of application for these machines. Legged robots have the great potential advantage
to move in environments where wheeled ones cannot be utilized, for example in such that
contain obstacles or where ground-damages must be avoided.
The price for the greater flexibility of legged machines is the need for a more complex
control. A great number of degrees of freedoms (DOFs) has to be coordinated in such
a way that it results in a translation of the robot’s body over the ground. Furthermore
the robot should be able to perform in the real world, not laboratory conditions, but with
humps, wholes, limited energy supply etc.. Since foreseeing all possible pitfalls exceeds
human capabilities it is not feasible to write a program of a walking behavior that could
cope with every situation and run it on the robot. Instead it is desired that the robot takes

9



10 CHAPTER 1. INTRODUCTION

care of these things itself – autonomously. A control that is reactive to the determining
factors such as the environment, the robot’s body itself, or a specific demand like fast or
very stable walking, is therefore needed.

This work does not aim at developing an adaptive walking behavior, but with a special
subtask of it, namely with finding a particularly fast gait.
For this task a commercially available quadrupedal robot platform, namely the pet-dog
“Aibo” [aib05a] of Sony is chosen. As an off-the-shelf solution much research has been
conducted using this machine. Numerous publications dealing with walking behaviors
for the Aibo are available, e.g. [BI00], [HSYF05], [ZON02]. The Aibo is also used for
the Four-Legged-League in Robot Soccer [Rob] and as basic behavior fast walking is of
concern of nearly every team, see for example [CV04], [Rö04],or [KS04]. Since the hard-
ware platform is always the same the behaviors are well comparable which facilitates the
evaluation of one’s own results.
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1.1 The Control of Legged Machines

The aim of this section is to provide the reader with an overview of the most important
control paradigms for gait-generation in legged robots and the milestones that had lead to
them.
The term “gait-generation” refers to the “formulation and selection of a sequence of co-
ordinated leg and body motions that propel a legged robot along a desired path” [WT92].
Hence, a “gait” denotes the according sequence. An alternative definition of a gait is given
in section 3.1.

1.1.1 Historical milestones

• Automata:
The first effort to construct legged machines was made in the mid 18th century.
Automata were constructed by J. de Vaucasson, P.-J. Promond, and H. Lois to mimic
life and were demonstated at fairs and exhibitions. Bellows and levers were used to
control them [Ree99].

• Mechanical Kinematic Linkages:
In 1850 the Russian mathematician Chebyshev invented mechanical kinematic link-
ages. They connected joints so that they moved together and made the machine
move along a horizontal path. The Mechanical Horse patented by Lewis A. Rygg,
although never actually built, is a famous example. It took almost 90 years until this
technique was found to be too restrictive [Rai86].

• Human-Control:
In the mid 1960‘s Ralph Mosher at General Electric built the “versatile walking
truck” [LM68]. This is an impressive four-legged machine harnessing a human as
control unit. The driver was seated in a cabin on top of the machine controlling its
legs with the help of handles or pedals. This form of control was very demanding
on the driver and actually ignored the control-problem.
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• Digital Computer:
The next milestone was the first use of digital computer control in 1977. Robert
McGhee used it primarily to solve kinematic equations for his insect-like hexapod.

• Passive Control:
In 1990 Tad McGeer showed that much of our walking is produced by mere swing-
ing movement of the legs. He let a biped, which was not more than a planar mech-
anism with two legs, walk down a slight slope. This was possible due to carefully
tuned weights, and needed no other control or energy input.

1.1.2 A Classification of Computer-Based Approaches

With McGhee’s work, using computers as control for gait generation started. They have
been employed in several ways. Although often used in combination they can be distin-
guished as follows.
The taxonomy presented here is partly based on the classification proposed by Wettergreen
[WT92] and does neither claim completeness nor uniqueness since there are many other
possibilities to structure the various approaches existing in robot control.

Rule-Based

In this approach a given gait is described by a plan in the sense of classical Artificial In-
telligence. The gait/plan is generated by applying a set of rules or heuristics to a world
model (a symbolic representation of the world).
This kind of analyzing perception, planning and action independently of each other is
called functional decomposition [Har93].

The Adaptive Suspension Vehicle by Waldron and Song ([SW89]) is controlled in such
a way, as well as the Titan robots by Hirose and Yoneda [HFK86].

Because a symbolic representation cannot describe the real world adequately, the plan
which is generated on top of this model can never be sufficiently robust and general. This
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is the major drawback of this approach.
Another disadvantage is that the gait described by a plan has to be there first, i.e. someone
has to decide which kind of gait to use. This might lead to suboptimal results, since it
cannot be known if the chosen gait is optimal for a given machine.

Constraint-Based

In this approach the range of possible moves is predefined. This set of movements is
constrained by certain factors such as kinematics, terrain and stability. A gait can be
designed from the remaining possible moves [WT92]. This can be done manually or by
applying automated search- and optimization methods as in many of the walking behaviors
developed for the Four-Legged Robot League in Robocup [Rob], e.g. [KS04] or [KU03].
Designing a gait manually can, like the rule-based approach, lead to a suboptimal result.
Another disadvantage is the potentially great search space, scaling it down can also reduce
the quality of the resulting gait.

Control-Based

Controllers associated with this approach use control-theory to regulate variables, e.g. bal-
ance, which can lead to gait-generation as a by-product. This kind of gait generation is
used in most bipeds today [WT92]. To produce a fast and dynamically stable gait control-
theory was first employed by Marc Raibert in 1986 ([Rai86]). The idea was inspired by the
classical pole-balancer, that maintains stability by using the appropriate feedback. With a
controller that was divided into three subparts and used certain feedback, Raibert enabled
a one-legged machine to keep its balance while traveling at a specified rate. This was
possible because the machine contained a springy leg, that allowed it to bounce. The three
parts seperately controlled hopping motion, forward travel, and posture of the body. A
finite state machine synchronized them. No classical planning was used and the control
was comparably simple. Later he expanded this approach successfully to other machines,
including a quadruped.
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Behavior-Based

This approach can be seen as contradistinction to the rule-based approach, since it re-
jects the view of functional decomposition. Instead it adopts that biological systems pro-
duce gaits without conscious reasoning [WT92]. It brings together biological science and
robotics by incorporating principles and insights found in the field of non-linear dynam-
ics, neurobiology, zoology, evolutionary biology and other “life-based” sciences. Control
networks as regulating device are used. These can be artificial neural networks (ANNs)
designed after a nervous system (see section 2.1.2) which are considered to control behav-
ior in organisms.
The first who broke with functional decomposition was Brooks in 1986 with the sub-
sumption architecture [Bro89]. This was based on the idea that many parallel and loosely
coupled processes that connect sensors to actuators can control an agent. Others, that
adopt biological aspects in their work of legged vehicle control are e.g. Beer [BQRC97],
Kimura [KFK01], Dillmann ([lAD00]), and Billard and Ijspeert [BI00]. The advantages
of this paradigm are that no world model is needed and no complicated formulas have to
be evaluated as can occur in the constraint based approach. Furthermore it constitutes a
good platform to test biological hypotheses and to even generate them. A drawback is
that no process exists that guarantees the correct synthesis of such a controller. The reader
is referred to [Leg] and [Kim] for further information about milestones in legged robot
development or an overview about existing robots.
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1.2 Applying the Behavior-Based Approach

As could be seen in the previous section one way of generating controllers for a walking
behavior, is to provide an algorithm (rule-based and constraint-based approach). It is ar-
gued here that this is restrictive, because it contains much implicit knowledge. Since all
humans have a certain understanding of how a particular behavior should be carried out
they are likely to implement what they believe is best. Thus, man made solutions are al-
ways biased. That does not mean that they necessarily perform worse than other solutions,
but that others which could perform better will not be found. In this sense the rule-based
and, under certain conditions, also the constraint-based approach are a restricted form of
control. Nevertheless it has been commonly used for Aibo-walking. In [Dü04] the cre-
ation of a walking behavior which is predetermined is described. A similar approach was
conducted in 2000 by [HDI00]. It was the winning team of the 2000 RoboCup Tourna-
ment, and their suggested walking behavior was widely adopted and improved [Dü04].

This work aims at generating a fast walking behavior for a quadruped, the Aibo-robot,
that is not limited by the inevitable bias of designed solutions. A technique that admits
this is Artificial Evolution which was employed to generate a neural network as control
unit – a so-called neurocontroller (see section 2.1.2).

To save time and prevent the hardware from damages Artificial Evolution was not directly
carried out on the physical robot but instead on a computer simulation of it, which was
especially built for this purpose as described in section 2.4.
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1.3 Outline

This work is structured as follows:

• In chapter 2 the used concepts, tools and techniques such as behavior, neurocon-
troller, recurrent neural networks, Artificial Evolution, and the simulation of the
robot, are motivated and elucidated.

• In chapter 3 is shown how these tools were employed to achieve the desired con-
troller. Also approaches are pointed out to that did not lead to a satisfactory result
but nevertheless contributed to the outcome of this work.

• In chapter 4 the best performing controller generated by Artificial Evolution is in-
vestigated. It is shown how this network can be simplified and improved.

• The results presented in the previous chapter as well as the used methods are dis-
cussed. General conclusions are drawn that can contribute to future work. Finalizing
a summary of the work is given.



Chapter 2

Methods

To accomplish the stated goal of this work several techniques and tools
were necessary. What these are, why and how they were used is content
of this chapter.

2.1 Basic Concepts

The use of neurocontrollers is motivated by the Behavior-Based approach in combination
with the Dynamical Systems approach. In the following these concepts and their relations
to each other are described.

2.1.1 Behavior

A behavior is the interaction of a body with its environment. For interaction, a body must
dispose of means to perceive and alter the environment. These are sensors and actuators.
Informations about the environment are perceived by sensors and passed to the sensory
system where a preprocessing takes place. This includes filtering and transferring these
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18 CHAPTER 2. METHODS

information into appropriate input for the next entity where they are send to afterwards.
This unit, where the main processing takes place, is referred to as cognitive system. It
processes the received information and sends according output to the motoric system. All
three systems are made of neural structures and the information flow between them is
bidirectional, i.e. the cognitive system can also send information to the sensory system
and receive them from the motoric system.
This concept is called sensory-motor loop [Pas96] and is visualized in figure 2.1.
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Figure 2.1: Neuro-Sensory Loop. Adapted from [Mah03].

As a consequence, a behavior is initiated by the cognitive system, but cannot be considered
isolated from the body, in which it is embedded, and the environment. In other words: “[...]
behavior emerges from interactions of nervous system, body and environment” [CB97].

2.1.2 Behavior and Dynamical Systems Approach

Examining behavior-generation in biological systems is difficult. It is assumed to be more
effective to investigate an abstraction of the (biological) cognitive system instead. This
abstraction must, of course, contain the relevant features of the biological example. The
Dynamical Systems approach assumes these features to be the dynamic character of such
a system. The employment of recurrent artificial networks as modeling tool is motivated
by this approach.
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“The brain is a self-organized, pattern-forming, dynamical system” (p.285 [Kel95]) which
is non-linear [EFL+04]. As such, it can be described in the language of dynamical sys-
tems theory. The Dynamical Systems approach indicates that when an artificial neural
system is to be built “the mechanisms can be considered as composed of a finite number
of interacting components [...]” [HPW+05]. This is the case when employing artificial
neural networks to model a neural system, as e.g. suggested in chapter 5 in [PS99]. For
instance, a recurrent artificial neural network (RNN) based on sigmoidal transfer functions
also states a non-linear dynamical system, and dynamics observed in brains, like chaos,
bifurcation and hysteresis, can also occur in these systems. This has been shown for mini-
mal systems [Pas93]). Due to this relation RNNs are considered to be an adequate tool to
model neural systems.
Furthermore it is assumed that understanding the dynamics, within such an artificial net-
work that lead to a behavior, may contribute to a broader understanding of behavior gen-
eration in organisms.

2.1.3 The Neurocontroller

In the following a neurocontroller is an artificial network acting as cognitive system within
a body (compare to section 2.1.1). A body is considered to have a spatial extension greater
than zero and to obey the laws of physics. This includes robots and physical computer
simulations of such. Furthermore the body must dispose of sensors and actuators.
The in- and output neurons of the neurocontroller can be considered to be part of the
sensory resp. motoric system. Sensors deliver raw input data, which is transformed into
suitable network input during a preprocessing. Accordingly, network output is transformed
into actuator signals during a postprocessing.
Section 2.5 describes how the neurocontroller was embedded in the Aibo-robot.
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2.2 Neuron Model and Networks

Artificial neurons and synapses make up artificial neural networks. They are inspired by
biological neurons, which serve as information processing units in neural systems. A great
range of neuron-models exists, that differ in how detailed they are modeled after their bi-
ological paragon. A discussion of several existing models can be found in [DA01].
Here, it was assumed that if it should be possible to understand how a behavior is accom-
plished by the mere ordered co-action of processing units. No unnecessary complexity
should be added. Therefore the neuron model was desired to be simple, but complex
enough to be able to generate the desired complex dynamics.
One that is suitable and used here is the time discrete standard additive neuron model with
sigmoidal transfer function σ. In this case the hyperbolic tangent was used, σ = tanh.
The activation a of a neuron is the weighted sum of all incoming neurons plus a bias. The
formal description is given in 2.1 and 2.2, where:

• ai denotes the activation of the ith neuron

• t stands for a discrete time step

• wij refer to the weight of the connection from neuron j to i

• N is the total number of neurons in a given network

ai(t+ 1) = θi +

N∑

j=1

wijσ(ai(t)), i = 1, ..., N (2.1)

oi = σ(ai(t)) (2.2)

For the networks referred to throughout the rest of this work the following holds: Input
neurons are treated as buffers for incoming sensor signals, σ(x) = x. All neurons are
connected via directed and weighted synapses. These are either inhibitory (the synapse
weight was negative) or excitatory (the synapse weight was positive). Concerning the
topology of the used networks it is important to note that no restrictions were imposed on
the connections between inner and output neurons. This means that an arbitrary number of
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in- and output synapses of a neuron was possible and in particular self-connections were
allowed. Neurons that are neither in- nor output neurons are called hidden neurons. When
a network contains one or more self-connections or loops it is called a recurrent neural
network. The graphical representations of networks used in this work are according the
conventions depicted in figure 2.2.

Figure 2.2: A small recurrent network consisting of three neurons. Input neurons (0) are
denoted by a red circle, hidden neurons (1) denoted by a blue-, and output neurons (2) by
a green circle. Excitatory synapses are represented by red arrows and inhibitory synapses
by blue ones. The weight of each synapse is indicated by the number next to it.

2.3 Artificial Evolution

Biological cognitive systems are the most impressive control systems available. They were
not built but instead produced by evolution. In this section it is described how the concept
of evolution was employed to produce neurocontrollers.

In the 1960s the discipline of Artificial Evolution arose with work by John Holland and
L.-J. Fogel in the United States and by Ingo Rechenberg in Germany [PS99]. It is closely
related to the field of Artificial Intelligence and Artificial Life. Artificial Evolution (AE)
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is a heuristic optimization method based on principles of biological evolution, such as
recombination, selection and reproduction. For an impressive example of its usage is re-
ferred to the creatures of Karl Sims [Sim94]. Hornby et al. used AE for automatic gait
generation for the Aibo [HSYF05], [ea99]. Chernova and Veloso used it for the special
purpose of fast walking [CV04], also for the Aibo. In each case AE lead to satisfactory
results according to the goal each work aimed at. Also in each case the training took place
on the physical robot itself. The learning algorithm was executed on an off board computer
in [CV04]. To prevent the hardware from damages and to save time in [CV04] the search
space was constrained, which is problematic. Depending on the level of restriction, the
possible benefit achieved by AE can be lost. In this work AE is applied to a simulation of
the robot, which has several advantages as well as some weakness as will be discussed in
section 2.4 and chapter 5.
Another motivation to use AE is the desired employment of RNNs. Till this day there is
no general analytical method available for constructing RNNs that can be used to gener-
ate a non-trivial behavior. Therefore it is often not feasible to design such controllers “by
hand”. RNNs exhibit a high dynamical complexity and so far only networks with maximal
three arbitrarily connected neurons can be mathematically understood [Pas02]. Or as In-
man Harvey [Har93] puts it: “Although behavior-based approaches to robot control appear
to be far more promising than traditional model-based functional decomposition methods,
[...] the design of such control systems is still prohibitively difficult.”

2.3.1 The Algorithm ENS3

Evolution of neural systems by stochastic synthesis (ENS3) is the evolutionary algorithm
used in this work. It has already been successfully used in several cases e.g. [PD97] and
[PSHL01]. It is implemented as part of the ISEE-package (see 2.3.2). It can be used with
the proposed neuron model and allows to develop network structure as well as parameter
optimization. Parameters are weights of synapses and bias values, the term structure refers
to the topology of the network.
The algorithm in combination with its implementation provides a very flexible and thus
powerful method for generating RNNs. Only the number of in- and output neurons is
predetermined, since it depends on the amount of the sensors and actuators of a given
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morphology. Furthermore no self-connections of input neurons are admitted. Apart from
this it almost sets no constraints on the development of networks. All kinds of connections
are possible, in particular self-connections. Connection types can either be excitatory or
inhibitory.
Since the algorithm is biologically inspired the terms used in relation to ENS3 are also
adapted from biology, i.e. the algorithm is said to operate on a population of individuals,
p(t), at time t, where an individual ni(t); i = 1, . . . , I , is a RNN and I = |p(t)|.
In addition there are so-called parents, or parent-networks as well as offspring respectively
offspring-networks. A population consists of parents and offspring.
The evolutionary process is determined by values that are to be set by the user at start and
which can be altered during runtime. These parameters comprise:

• The maximal amount of inner neurons and connections.

• The average amount of offspring.

• A probability indicating how often neurons, resp. synapses are mutated.

• A probability indicating to what extent neurons and/or synapses are mutated.

• It is possible to apply the concept of costs to neurons and synapses. This means that
adding neurons to networks is allowed but reduces the fitness. Thus, the generation
of small networks is fostered. The values describing these costs have to be set by
the user.

Furthermore a fitness function must be provided, which can also be altered during runtime
as well as an environment for the simulated robot.
When an evolution is commenced two different scenarios are possible: First, the start
from an empty network, i.e. the only neurons present at start are the predetermined input
and output neurons and second the start from an initial network. This can be achieved
by a previous evolution or by hand design. The base of ENS3 is a variation-evaluation-
selection-loop which can formally be represented as follows:

p(t + 1) = S(E(V (p(t)))) (2.3)
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S, E, and V each represent a set of operators that determine the selection-, evaluation-
and variation-process. Their functionality shall be explained by running through the loop.
When a new evolution is started and the required parameters are set, the loop is triggered
for the first time:

1. A certain amount of stochastically mutated copies of the parent networks is created
by V. This is achieved by insertion and deletion of neurons as well as alteration of
bias and weights. If and to what extent any of these actions is carried out, is regulated
by parameters alterable through the user. For example if the probability for insertion
of neurons is set to zero no further neurons will be added to the networks.

2. The operators of E assign a fitness-value to each of the networks of p(t). Therefore
a fitness-function must be provided which is then used to evaluate the performance
of each individual.

3. According to the fitness-values the selection operators of S determine which net-
works qualify as parents for the next generation. This is realized by means of a
Poisson distribution along with parameters set by the user. In the extremes only the
best performing network is allowed to reproduce, or all. The chosen networks are
then passed as parents on to the next generation (p(t + 1)) and the loop is repeated.

There is no stop criterion to this algorithm therefore it has to be halted by the user.
Finally ISEE (see 2.3.2) allows the concurrent generation of several populations, akin
biological co-evolution. In this case fitness is given to several networks acting together.
Each individual network is part of a different population. That way, not necessarily one
eventually big network for a particular problem has to be generated, but a division into
smaller sub-modules is possible. This concept, co-evolution, was used in this work.

2.3.2 Artificial Evolution with ISEE

The program package ISEE (Integrated Structure Evolution Environment), developed at
the Fraunhofer Institute in Sankt Augustin, provides the required platform for carrying out
the previously presented concepts of AE and permits the design of such a simulation as
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Figure 2.3: Schematic description of AE with ISEE. Adapted from [Mah03]

described in 2.4. Its functionality is schematically depicted in figure 2.3. ISEE consists of
three main parts, the programmes EvoSun, Hinton and YARS (Yet Another Robot Simula-
tor). YARS is based on ODE (Open Dynamics Engine) [ode05] and permits the realization
of physical simulations.

EvoSun contains an implementation of ENS3. It administrates the population(s) and ap-
plies variation and selection to each individual. Every generated network is sequentially
sent to Hinton where it is processed and evaluated with the help of YARS. Therefore Hin-
ton sends the processed network output to YARS, which realizes the according action in
the simulated robot in the simulated environment. Afterwards YARS calculates new sen-
sory input and sends it back to Hinton which uses it as input for the network. According to
the given fitness function Hinton evaluates the current network and sends this value back
to EvoSun which employs it for the selection mechanism.

Usually a given robot equipped with sensors receives sensory data in a fixed frequency
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which is determined by an internal clock. The same applies for motor data. The Aibo for
example receives sensory data and can send motor data every 8ms. This frequency is an
important constraint which must be considered in the evolutionary process.

2.4 The Simulator

Carrying out Artificial Evolution in a simulator can have several advantages given that cer-
tain criteria are fulfilled. The following section describes what these criteria are. There-
after the assembly of the used simulator is explained.

2.4.1 Requirements

There are two main reasons that justify the extra effort of constructing a simulation of
a given robot when evolving a neurocontroller. First, during AE behaviors might come
about that can cause damage to the often expensive hardware. This can be avoided when
AE takes place in a simulator instead. Second, since a great number of offspring guaran-
tees genetic diversity in a population, in AE it is sometimes necessary to evaluate many
individuals per generation. This can be highly time-consuming when conducted in real-
time. A simulator can offer faster calculations and therefore save days or even weeks of
evolution time. As discussed in [Jac98] the simulation of a given real robot must fulfill
some requirements so that the advantages concerning time are not lost. On the one hand
it must not be computationally expensive to ensure that calculations can indeed be carried
out faster than real-time. Furthermore the design of a simulated robot must not be too
complex and the developed neurocontroller robust. If developing the simulation takes too
much time obviously there is not much benefit left in using it. A robust neurocontroller is
immune to minor alterations of the body. That is behavior-generation should only be de-
pendent on essential morphology-features. For instance, changes in motor-strength, maybe
due to low batteries in the robot, should not impede the correct functioning of the neuro-
controller. This guarantees that a controller can be transferred to hardware with minimal
effort. If this is not the case, the possible benefit of using a simulator is lost. Robustness
can be achieved in AE by “breeding” generalists instead of specialists, e.g. by adding
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noise when appropriate, or using different environments.

Concluding, the simulation shall be computationally fast, simple to design and support
the generation of robust controllers. A program package designed for this purpose (ISEE)
has been described in section 2.3.2.

2.4.2 Physical and Simulated Robot

For the reasons stated above, this work was not aimed at constructing an exact simulation
of the Aibo-robot. Instead it was supposed to be physically sufficiently similar. That is,
it was considered to be good enough when an observable behavior of it was also carried
out by the real robot. To accomplish this, the basic features of the robot relevant for
walking had to be modeled. The robot is equipped with a large number of motors/joints
and sensors, including numerous touch sensors, a camera, distance-sensors, foot-contact
sensors at each paw, and one sensor per leg-motor. Furthermore 20 motors are built in for
its legs, head, jaw, ears and tail. As basic features for modeling the simulated robot were
considered: body parts (head, trunk and limbs) defined by its expansion and weight, and
the following sensors and motors:

• Foot-contact sensors. They were situated on the sole of each “foot”, notifying about
ground contact.

• Motor-sensors which continuously monitored the deflection angle of the according
motor.

• Three motors per leg, which were each defined by a deflection angle, strength and
velocity. The individual deflection angles are depicted in figure 2.7.

The real Aibo (A) and the simulator (B) are shown in figure 2.4.

The mass of each body part as well as its dimensions were acquired from its specifica-
tion and [Aib05b]. The total mass of the Aibo is declared to be “approx. 1.65kg” [aib05a]
including battery and memory stick, the simulated robot’s total weight is 1.7kg. Each de-
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A B

Figure 2.4: Real robot (A) and simulator (B).

gree of freedom in the simulator was modeled by an ODE-motor. This kind of motor is
defined by a maximal velocity in which it can move from one extreme deflection to the
other and a maximal force or torque that the motor will use to achieve the desired veloc-
ity. Experimental measuring of these parameters on the Aibo produced slightly different
values for each motor. Because it was assumed that all motors are of the same strength an
average value was used. Precisely the value used for maximal force was 0.43N, and 286◦/s
for maximal angular velocity.
To facilitate referencing the 12 motors used in simulation an order of legs and motors was
chosen. Leg 1 to 4 correspond to right foreleg, right hind leg, left hind leg and left fore-
leg. Left and right are determined according to the robot’s (or simulated robot’s) view,
see figure 2.5. Joint or motor order for each leg and the according coordinate system are
demonstrated in figure 2.6. Motors are enumerated from 1 to 3, where motor 1 is located at
the “shoulder” carrying out movement in the xy-plane (according to the given coordinate

body part height (m) width (m) depth (m) mass (kg)

head 0.04 0.065 0.12 0.08
trunk 0.09 0.09 0.23 1
thigh 0.08 0.03 0.04 0.08

lower Leg 0.04 radius: 0.02 0.075

Table 2.1: Dimension and mass of simulator body parts. Since the lower leg is in shape of
a capped cylinder the radius is given instead of width and depth.
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1

Figure 2.5: Top view on simulator. The arrow denotes the view of simulator and number
1 to 4 specify right foreleg, right hind leg, left hind leg and right foreleg.

system in 2.6). Motor 2 enables movement in the yz-plane and finally motor 3 allows the
lower limb to move in the xy-plane.

1

3

2

z
x

y

Figure 2.6: Joint order from 1 to 3 in simulator leg. Each joint is denoted by an arrow
which indicates its location and the plane in which the specified joint enables movement,
according to the global coordinate system shown on the right.

Each of the robot’s joints can be deflected within a particular range. All second joints have
the same deflection range of -0.1745rad 1.535rad as shown figure 2.7 D. The first and
third joint ranges differ, depending if they belong to a fore- or a hind leg. The exact values
in radian are visualized in figure 2.7 A, B and C.
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Figure 2.7: Deflection ranges of joints in radian. For all second joints the values depicted
in D apply. For first and third joints, ranges for fore- and hind legs differ as shown in A, B
and C.
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Each motor comes with a sensor which detects the current deflection of it. These sen-
sors are enumerated as the according joints. Thus, sensor two of the first leg specifies
the sensor that observes the second motor of the right foreleg. In the simulator these sen-
sors where entailed with a Gaussian noise of 1%. Although the sensors of the physical
robot deliver very accurate values this noise was added to enhance the robustness of the
controller, as discussed in [Jac98].

2.5 Embedding the Neurocontroller

The neurocontroller as described in section 2.1.3 per definition acts in the sensory-motor
loop. In this case the body is the Aibo-robot or the computer simulation of it.
The general setup can be explained as follows:
Sensors (foot-contact sensors and joint sensors) send data to the input neurons of the neu-
rocontroller. Network output can be sent to the motors in the same frequency. The infor-
mation flow is depicted in figure 2.8. An interface is needed which ensures that sensor
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Figure 2.8: Embedding of neurocontroller in Aibo-body. Adapted from [Mah03].

data is sent to the input neurons of the controller and that output signals are transferred
to the actuators. The German Team Software, described in the following chapter 2.5.1,
constitutes an adequate platform.
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2.5.1 Neurocontroller and German Team Software

The German Team (GT) is the German national robotic soccer team participating in the
Sony Four Legged League, and is world champion of 2004. Its software is freely avail-
able at [Ger05]. This software is based on a modularized architecture [GT204]. There are
modules, among others, for vision, self-localization, body sensor processing, and motion.
This presents a convenient way of embedding the neurocontroller as another module in a
stable and well-functioning environment and thus to test it on the physical robot. Imple-
mented as motion module the neurocontroller has access to sensor values and its output
was automatically passed on to the hardware motor controllers, which finally caused the
motors to encounter the postulated position. The sending of motor data and the receiving
of sensor data is implemented in the GT software to take place every 8ms or 125 Hz.
To execute a neurocontroller on the hardware it had to be converted to a German Team code
module and then added to the GT software. The new module was written on a memory
stick which was to be inserted into the Aibo itself. Modules could be chosen by selecting
the according entry in the GT software user interface as shown in figure 2.9. Commu-
nication between the robot and the computer on which the software runs, is realized via
wireless LAN. When selected, the according module is executed on the robot. The user
interface of the program “RobotControl” is shown in figure 2.9. Visible is the drop down
menu from which several walking modules can be chosen.

Furthermore the GT software provides the possibility to store received sensor- and sent
motor-values for a determined time span, which was used for the analysis of the motion
process.

2.5.2 Pre- and Postprocessing

Because the proposed neuron-model for the neurocontroller employs the tangent hyper-
bolic as transfer function (compare section 2.2), output values of the network were be-
tween [−1, 1]. These output values were used to determine motor positions of the robot’s
legs. In the GT software the positions are measured in milli radians. Therefore, incoming
sensor values for each motor were linearly mapped from milli radians to [-1,1]. Accord-
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Figure 2.9: User interface of the program “RobotControl” of the German Team. Visible is
the drop down menu from which several walking modules can be selected.
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ingly the network output had to be mapped back from [-1,1] to the appropriate range in
milli radians. Hereby the negative range values in milli radian were mapped to -1 and the
positive values to 1 as shown in figure 2.7.



Chapter 3

Evolving the Neurocontroller

In the previous chapter the used tools for generating a neurocontroller
for a fast walking behavior for a quadruped have been explained. In the
following it is described how their usage lead to the desired controller.

In the previous chapter it was stated that no general analytical method exists to hand-
design a neurocontroller for a non-trivial behavior. Instead AE was suggested as a heuris-
tic method to generate such a network. Unfortunately there is no recipe explaining how
to employ AE in order to achieve a controller for a certain behavior. Therefore it has to
be determined experimentally. Several experiments were conducted and some of them in-
crementally lead to a controller which generated a satisfactory walking behavior for the
robot. A representative selection of these experiments is presented in the following. As
starting point for all experiments basic features of walking were considered.

35
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3.1 Features Of Walking

Consulting the relevant literature on walking lead to the following list of properties.

• A gait according to [Hil89] is “a regularly repeating manner of moving the feet”.

• “A step is the advance of one leg, step cycle the cyclic motion of one leg and
step length the distance between two consecutive footholds of one leg in a ground
frame.”1[Rid99].

• A step cycle can be divided into a power stroke and a return stroke , e.g. [Ful93].
During the power stroke the body is supported and propelled forward, whereas dur-
ing the return stroke the leg is moved from one foothold to the next.

• “A stride consists of as many steps as there are legs, i.e. typically each leg completes
a cycle of motion and the stride length of a gait is the distance the trunk translates
during one stride. Stride duration is the duration of one stride and the locomotion
velocity of periodic locomotion is simply stride length divided by stride duration”
[Rid99].

• Important issues, when describing gaits is the sequence and the timing in which the
legs advance.

• ”Control of insect walking can be considered hierarchical and modular” [Del99].

Based on the above items it was concluded that a gait could functionally be decomposed
into

1. individual leg movement (the step cycle) and

2. leg coordination, i.e. the order and the timing in which the legs advance.

This lead to the experimental setup described in the following section.

1Ground frame refers to the “inertial frame fixed with respect to the ground”
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3.2 General Experimental Setup

The previously described decomposition of a gait was transferred to the control problem.
One network for each leg to control the step cycle and one for the leg coordination was
considered a plausible partitioning. These networks, or modules, were connected to form
the neurocontroller. Furthermore one assumption was made, namely that contra-lateral
legs carried out the same step cycle. Thus, all four legs could be controlled by two differ-
ent networks, which reduced search space and hence sped up the evolutionary process.

The following setup was used for all conducted experiments: Co-evolution was applied
to three populations. Thereof was one population for the fore legs, one for the hind legs
and one for a coupling or coordination module. These three networks connected together
formed the neurocontroller. The connection was realized by inter-neurons of which each
leg network contained one. The inter-neurons were connected to the coordination mod-
ule via two synapses which enabled bidirectional data transfer. The modular concept is
visualized in figure 3.1. In the following, neurocontrollers are illustrated according to this
modular approach. An exemplary presentation is given by figure 3.6. The order in which
sensors and motors are addressed is shown in figure 4.3 (A) for the fore legs and (B) for
hind legs.

When a walking behavior was observed in simulation the according neurocontroller was
transferred to hardware and the speed of the gait was measured. Therefore a test course
was set up as shown in figure 3.3. Two labels on a wall indicated the length of one meter.
The robot had to cover this distance from a flying start and with fully charged batteries.
This was filmed by a digital camera which afterwards enabled to locate the robot’s position
during the run within time frames of 1/25s and thus to determine its achieved speed. Each
neurocontroller was tested 10 times, and its speed was set to be the average value of these
runs.
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Figure 3.1: Schematic description of the modularized neurocontroller (A) shown next to
the robot (B) to which it was applied.

3.3 Experiments

The conducted experiments are distinguishable concerning the following items.

• Whether evolution was started with empty networks, or imposed structures (compare
section 2.3.1).

• How the modules were connected to form the neurocontroller.

• The used fitness function.

• The parameter settings.

• The environment.

3.3.1 Empty Leg Networks and CPG

The first evolution was started with empty leg networks, i.e. only in- output- and inter-
neurons. The coordination module contained two coupled oscillators, as shown in figure
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Aibo

Camera

Start End
1 meter

Figure 3.2: Test course setup for ve-
locity measurement of the physical
robot.

Figure 3.3: View through camera.

3.4. This network was adopted from another project [KZP04] and is what is generally
called a central pattern generator (CPG). CPGs are “neural networks that can endoge-
nously (i.e. without rhythmic sensory or central input) produce rhythmic patterned out-
puts” [Hoo00]. It is generally accepted that rhythmic movement, like walking, swimming
or breathing is induced by CPGs [Hoo00]. The signal output of the used CPG were four
sinusoidal curves as shown in figures 3.4 and 3.5. The connection between the three mod-
ules was realized by the described inter-neurons. One interneuron per leg module received
one of the CPG signals. Furthermore signals from the leg networks could be sent back into
the CPG via the interneuron. This was put into practice by an inner neuron within each
leg network that was connected via two synapses to the coordination module. One lead
from the CPG to the leg and the other synapse lead from the leg to the CPG, as depicted
in figure 3.6.

The used fitness function (F ) is given by:

F =

T∑

t=0

x(t)2 (3.1)

where t denotes discrete time steps and x indicates the position along the x-axis of the
simulated robot in world coordinates. The coordinate system was given in figure 2.6. The
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Figure 3.4: Structure and signal output of the used CPG.

sum of the squared covered distances was used instead of the plain covered distance to
increase the selection pressure.

During the first generations no changes within the coupling module were admitted, i.e.
no neurons or synapses were allowed to be added or deleted. Because no usable results
were achieved with this setup these restrictions were loosened. However, this did not lead
to improvements within a time span of several days and it was concluded that the chosen
approach caused a large search space for AE. To reduce it it was decided to provide initial
leg networks. This experiment is described in the following.

3.3.2 Imposed Leg Networks and CPG

Hand-designed networks were used as start networks for the legs. These caused inverted-
pendulum-like movements of the legs which were induced by sensory input. The structures
of the networks are depicted in figure 3.6. This accelerated the process significantly and
after several generations the simulated robot moved forward.

However, it always lapsed into a vibration-like “gait”, i.e. its legs exhibited high frequent
oscillations. By this fast back and forth movement of the legs the robot was propelled
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Figure 3.5: The four output signals of the used CPG. Each curve is labeled according to
the neuron labels in figure 3.4.

forward, due to the simplified friction model of ODE. Because the individuals that had
developed this kind of locomotion gained high fitness scores and reproduced, after a few
generations they had ousted all others. Two countermeasures were introduced. First the
environment was changed by building in low barriers, as shown in figure 3.7. Individuals
with the vibration-like gait could not overcome theses hindrances and thus could not re-
ceive a high fitness ranking. Second the fitness function was altered to punish high num-
bers of change of direction in leg movement as shown in the following formula:

F =

T∑

t=0

x(t)2 − c(t) ∗ α (3.2)

where α is a factor quantifiable during runtime and c denotes the change of direction in
leg movement.



42 CHAPTER 3. EVOLVING THE NEUROCONTROLLER

Coupling Module

Left Foreleg Right Foreleg

Left Hind Leg

Input Neurons Input Neurons 

Hidden Neuron Hidden Neuron

Output NeuronOutput Neuron

InterneuronInterneuron

InterneuronInterneuron

Right Hind Leg

Hidden Neuron

Input Neurons Input Neurons 

Hidden Neuron

Output NeuronOutput Neuron

Figure 3.6: Neurocontroller with hand-designed leg networks. Each circle indicates the
according module the neurocontroller is composed of. The leg modules contain neurons
for sensory input and output neurons. One hidden neuron per leg module serves as con-
nection unit (interneuron) enabling bidirectional data transfer between modules.The order
of sensor and motors is according figure 4.3. The fourth input neuron receives foot contact
information.

Step by step this lead to neurocontrollers which generated a walking behavior. It was
not satisfactory, but could safely be tested on the hardware. Unfortunately the observable
behavior of the physical robot differed strongly from that of the simulated one. It was
found that the problem occurred due to the insufficient implementation of the simulator’s
foot contact sensors. In the real machine the sensor reacted to force. A certain threshold
had to be overcome to result in a positive sensor signal indicating foot contact. In sim-
ulation the contact sensors were modeled by means of very short infrared sensors which
was a constraint imposed by YARS. Whenever the foot was close enough to the ground
a positive sensor signal was sent to the neurocontroller. In reality the same foot position
did not always result in a positive sensor signal, which changed the behavior significantly.
Furthermore the leg architecture of the physical robot also had affect on the activity of the
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Figure 3.7: Simulated robot within a barrier containing environment.

contact sensors. Its design was more complex than that of the simulated robot as can be
seen in figure 3.8. A remodeling of the legs did not lead to better results and it was decided
to do without the contact sensors.

A B

Figure 3.8: Schematic description of a hind leg of the physical robot (A) (adapted from
[Mod]) and the simulated robot (B).

3.3.3 Imposed Leg Networks and no Contact Sensors

After the contact sensors had been removed the leg networks were adjusted. The initial
network-setup is shown in figure 3.9. Parameters for the CPG-module were set so that no
changes within this structure could occur. After 2092 generations a neurocontroller that
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Figure 3.9: Initial neurocontroller with hand-designed leg networks without contact sen-
sors.

lead to an acceptable walking behavior was produced. It is depicted in figure 3.10.

Because small networks were preferred, evolution was continued and costs for neurons
and synapses were introduced, as explained in section 2.3.1. That way, after 4320 genera-
tions, a considerably smaller neurocontroller was produced, as can be seen in figure 3.11,
which led to a faster walking behavior. The measured speed achieved by the physical
robot was 39.56 cm/s. This was the best performing neurocontroller generated by AE of
all conducted experiments. It is analyzed in chapter 4. In the following it is referred to as
“neurocontroller 4320”. Successively evolved controllers, although gaining a higher fit-
ness in evolution, did not result in a faster behavior on the real machine. This is discussed
in chapter 5.

3.3.4 Connection Module and Fixed Legs

In the previously conducted experiments a given CPG was used as coupling module. To
find out if, and if so, which other coupling structures could lead to an equivalent behavior
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no initial coordination module was provided this time. Leg modules were taken from an-
other well-performing controller which is shown in figure 3.10. An evolution was started
in which leg modules were not allowed to change, but the connection network. A neu-
rocontroller that generated a walking behavior evolved. It is shown in figure 3.12. The
output of this module was plotted and the resulting curves were similar in shape, ampli-
tude and phase to the CPG output shown in figure 3.5. When synapses leading to this
module were removed it still produced similar output. Thus, what had evolved was also a
CPG, but a more complex one. When the leg networks were admitted to be changed, the
walking behavior slowly degenerated.

Other conducted experiments focused on imposing a structure on the coupling module,
that was determined by sensory input instead of a CPG. In [vT04] it is shown that a walk-
ing behavior for a simulated hexapod can be realized this way. This approach did not lead
to any functioning neurocontrollers.
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Figure 3.10: First evolved neurocontroller that generated an acceptable walking behavior.
Due to the large amount of neurons and synapses the illustration differs from the other
presented neurocontrollers. Each partition denotes a leg network in the following order:
right foreleg, right hind leg, left hind leg and left foreleg. The four neurons underneath
constitute the CPG. Observable is the complex structure of the network.
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Figure 3.11: Structure of the best performing neurocontroller generated by AE after 4320
generations.
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Figure 3.12: The only evolved coupling module that lead to a walking behavior.



Chapter 4

Analysis

A neurocontroller that lead to a fast walking behavior in simulation and
on the physical robot was developed by Artificial Evolution. To find out
how this behavior is generated the controller is simplified at first and
then analyzed. The results are used to improve the walking behavior.
The procedure of reducing, analyzing and subsequent improvement of
the controller is content of this chapter.

In the introduction it was stated that the motivation of this work is twofold. On the one
hand a neurocontroller for fast quadrupedal gait generation was to achieve, and on the
other to understand how this behavior is accomplished.
So far an adequate neurocontroller has been developed using Artificial Evolution (neuro-
controller 4320). In this chapter its functionality is examined, questions addressed are for
example if and how sensory input is processed. It is also described how the neurocontroller
was simplified to facilitate its analysis.
Finally it is shown how results of the analysis could be used to improve the walking be-
havior concerning speed.

49
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A B

C

A

C

100

100100

Figure 4.1: The two depicted paths are set equal. The new path does not lead to the exact
same network-output, since neuron C requires one time step less to calculate its output.
But because one time step is of very short duration (0.008s) compared to the duration of
one step cycle (0.45s, see section 4.3.3) this was considered to be negligible.

4.1 The Neurocontroller

The controller performing best, in simulation and on hardware is shown in figure 3.11. As
one can see the network is too complex for an intuitive understanding. For this reason an
effort was made to reduce it to its essential components.

4.1.1 Simplifying the Neurocontroller

The reduction of the controller was conducted the following way:

• A neuron without outgoing synapses can be deleted (and all the synapses leading
to this neuron), since it has no impact on other neurons. If thereby other neurons
arise without outgoing synapses they are deleted recursively until no more “dead-
end-neurons” are left.

• The observed neuron output of each hidden neuron is examined. If it is zero or very
close to zero (|o| < 0.01) it can be assumed that it does not have much effect on the
connected neurons and is deleted.

• Synapse-paths that can be substituted by shorter ones are identified and replaced as
shown in figure 4.1.
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Figure 4.2: Structure of the simplified controller.

By applying the above items to neurocontroller 4320, it could be reduced to a considerably
smaller network as shown in figure 4.2. The individual network modules are separately
shown in figures 4.3 and 4.4 (B) as well as tables for the according bias values 4.1, 4.2 and
4.5.

4.1.2 Verification of the Simplified Neurocontroller

To ensure that the simplified controller still produced the same, or nearly the same output
as the original, output signals of both controllers were plotted and compared to each other,
see figure 4.6. The differences were found to be insignificant.

Since there is very little difference between the outputs of the original and the reduced
controller it was concluded that they were of comparable quality.

Furthermore speed of the generated gaits by both controllers was measured in simulation.
Velocity was measured five times for each controller and the averaged values were com-
pared. It was found that the velocity achieved with the simplified controller was 1.66%
slower than with the original. Both controllers were also tested on the hardware and the
speed attained with the simplified controller was 2.17% slower. This loss in speed was
considered as negligible.
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A

Sensor 1

Sensor 2

Sensor 3

Motor 1
Motor 2

Motor 3

B

Motor 3

Sensor 2

Sensor 3

Motor 1

Sensor 1

Motor 2

Figure 4.3: The foreleg network (A) and the hind leg network (B) of the simplified con-
troller. Neurons without color filling are not part of the network, but indicate the connec-
tion to the coupling module.

neuron bias

0 0
1 0
2 0
3 0.1111780742956206
4 -0.39
5 0.5
6 0

Table 4.1: The bias values of the neurons of the foreleg of the simplified neurocontroller,
shown in figures 4.2 and 4.3 (A).
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A

B

Figure 4.4: The CPG with its connection to the inter-neurons of each leg (not color filled
neurons). The originally used CPG (A) and the CPG with evolutionary altered parameters
(B). The according parameters are listed in table 4.5.
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neuron bias

0 0
1 0
2 0
3 0.07922423324963722
4 -0.8655142036648698
5 0.9817831631826901
6 0

Table 4.2: The bias values of the neurons of the hind leg of the simplified neurocontroller,
shown in figures 4.2 and 4.3 (B).

Now that it was ensured that the reduced neurocontroller indeed performed as well as
the larger one it could be examined to find out how the fast walking behavior was accom-
plished.

4.2 Analysis of the Simplified Neurocontroller

Rather than analyzing the neurocontroller mathematically it was examined experimentally.
The goal was to describe how the network output that lead to the observable behavior was
produced by the controller. The analysis was conducted according to the modular decom-
position in fore legs and hind legs. Furthermore the connection between the modules was
examined. The coordination module was not studied because it was not altered and a study
on it is available (see [PHZ03]). Of particular interest was if the reconnection from the leg
module to the CPG had any impact – and if so which. This was closely coupled to another
question, namely what impact did sensory signals have on the behavior and in particular
on the CPG. For medium-speed walking of animals a neural system consisting of CPGs
and reflexes is proposed [FKC03] but it is not known how exactly both, CPGs and reflexes,
interact, and it is a topic of current research, e.g. in [BM98]. Here, a reflex is considered
to be a sensory signal that had direct impact on network output.
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neuron number bias original cpg bias altered cpg

1 0 -0.0029
2 0 0.0016
3 0 -0.002
4 0 0.0065
5 0 0.0175
6 0.01 0.0053
7 0 0.0037
8 0 -0.0044

Figure 4.5: A comparison of bias values of the original and evolutionary altered CPG
neurons. The enumeration of neurons is according figure 4.4.

4.2.1 Foreleg

The network for the fore legs is simple. As can be seen in figure 4.2 it does not contain any
hidden neurons with exception of the required interneuron. No sensory input is incorpo-
rated. Furthermore there are no re-currencies with exception of the synapses between the
interneuron and the connection module. Each output neuron receives the same input signal
differing only in amplitude. The output of all three output neurons for the right foreleg is
plotted in figure 4.6 (B) and for the left foreleg in (D).

4.2.2 Hind Legs and Sensory Input

The hind leg network, visible in 4.2 does not contain any hidden neurons, with exception
of the interneuron. All three output neurons receive the same input signal differing in am-
plitude. However, in contrast to the foreleg network, the signal received by the second and
third output neuron are inverted, as can be seen in 4.6 (F) and (H). The hind leg network
makes use of one sensory input. The output neuron for the first motor receives input from
the third sensor. What impact this has on the walking behavior is tackled in the follow-
ing. In figure 4.3 it can be seen that of both leg modules only the one for the hind legs
makes use of sensory input. However this signal is not propagated further, i.e. there are
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Figure 4.6: Comparison of output of neurocontroller 4320 (left column) and its simplified
version (right column) for each output neuron for all legs. As can be seen, the differences
between the output of both controllers are small.
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no outgoing synapses from output neuron three. To find out what impact this input signal
has, the output of neuron three was plotted twice. One time in its original form (o), and a
second time where the incoming synapse was deleted (ô). Both plots are shown in figure
4.7. As can be seen o and ô differ in offset to x-axis and amplitude. Also slightly in wave-
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Figure 4.7: Plot of output of output neuron three (according to labeling in figure 4.3 with,
o, (solid line) and without, ô, (dotted line) sensor input. Both plots differ significantly in
offset and amplitude.

form and phase. By manipulating bias of neuron three and w3,2, amplitude and offset of
ô, were adjusted to o. The resulting curve is plotted and compared to o in figure 4.8. The
resulting neurocontroller was tested on the hardware. The robot moved, but slower than
with the original controller. This was probably due to the differences in waveform. When
tested in the simulation no walking behavior was accomplished. The simulated Aibo fell
over immediately. It was found that hind legs were deflected so close to the Aibo’s torso,
that balance could not be maintained. Responsible for this hind leg movement was the
difference between the transients, which can be seen in figure 4.8. The initial values of o
are above zero while values of the manipulated ô are below zero. An output signal below
zero causes the hind legs to move towards the robot’s torso, as depicted in figure 2.7. In
simulation the robot starts moving from a standing position. Thus the transients of the
output signal determine the moves that lead from standing to moving. The incorporated
sensory input is therefore important to the simulated robot’s initial behavior which leads
to walking. The physical robot however was not started from a standing position. Rather
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Figure 4.8: Plot of o (solid line) and manipulated ô (dotted line). Bias, and weight of in-
coming synapse of the latter were altered to match the original signal. Differences between
both plots are small.

it was put on the ground when it already carried out walking movements. Because this
was also possible without sensory input it can be concluded that it was not crucial for the
walking behavior.

Furthermore it was possible to substitute the synapse leading from neuron five to neu-
ron four of the hind leg (comp. figure 4.3 (B)) neuron three by another, leading from the
interneuron to neuron four, as depicted in figure 4.9. After that the walking behavior was
still carried out by the robot (but slower). This shows that fore- and hind leg structurally
only differ in the sign of the weight of the synapse which leads to the third output neuron
and thus determines lower limb movement. Although the sensory input did not alter CPG
dynamics, it modulated the output of the CPG and thus contributed to the accomplishment
of the walking behavior. Considering the above it can be concluded that the sensory input
was not essential for accomplishing a walking behavior but for getting into the position
for it.
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Figure 4.9: The network structure for the hind leg, as shown in figure 4.3 (B), can be
transferred to the depicted structure without leading to a loss of walking ability. Thus,
fore- and hind legs can be controlled by networks of the same structure.

4.2.3 Impact on CPG

Obviously the “heart” of the walking behavior is the used CPG. During AE it had not been
subject to change, due to the fact that in other experiments this had lead to a degeneration
of the walking behavior. For the presented network only the synapse weights between
CPG and inter-neurons were modified, compare figure 4.4 (A) and (B) and table 4.5 were
the according bias values are listed.

As can be seen the modifications of weight values were small (< 0.3). To find out if these
had any impact on the patterns generated by the CPG the output of each interneuron of the
initial network was plotted and compared to the plotted output of the inter-neurons of the
altered network. These plots are shown in figure 4.10.

It can be observed that the small variations in synapse weight and bias caused similar
changes in the output signal of all four inter-neurons. These changes are:

• an increased amplitude,
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Figure 4.10: Comparison of interneuron-output of initial network (solid line) and output
of the equivalent interneuron of the altered network (dotted line). The altered signals differ
in frequency, waveform and amplitude from the original signals.



4.3. IMPROVING THE NEUROCONTROLLER 61

• a lowered frequency and

• a rounder waveform.

The frequency of the altered signal is lower than that of the original one, this leads to the
assumption that a lower frequency leads to a faster movement. This assumption will be
tested in the next section.

4.3 Improving the Neurocontroller

After the functionality of the simplified neurocontroller had been examined this knowl-
edge was used to adjust some of its parameters by hand. Doing this is justified, since
the simulated Aibo and the real one differ from each other in many aspects (comp.section
2.4.2). Thus the exact same behavior cannot not be expected. Since no more learning takes
place, when the network is applied to the real robot, the only way to improve performance
is changing parameters manually.

4.3.1 Path Trajectory

One observed discrepancy between the walking behavior of the simulated and the real
robot was the robot’s path trajectory. In simulation this was straight forward, the real
robot however tended to turn to the right and – if given enough time – completed a full
circle. Because this had to be due to different input signals to the leg networks, output
of each interneuron was examined. In figure 4.12 (A) the output of all four inter-neurons
of the initial neurocontroller (comp. figure 3.9) is plotted. Next to it, in figure 4.12 (B)
the output of all inter-neurons of the simplified neurocontroller. It can be seen that for the
latter an increase in amplitude of the signal for the right foreleg occurred. Furthermore
the phase shifts between all signals in (B) differ from those in (A). The greater amplitude
of the signal of interneuron 1 was considered to lead to greater strokes of the right foreleg
in comparison to the left one. The question arose why this did not lead to a turn to the
left in the robot. An answer was found when examining the used hardware. Each leg of
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the robot could be moved with little pressure to the outer limits of the deflection angle the
according motor could be set to. For instance, if the first joint of a leg was set to move
between -30◦and 30◦, then – if pressure was applied – the origin, around which the motor
moved, was shifted into the same direction. See figure 4.11 for an illustration. The higher

origin

−30° 30°

origin
?

?
pressure

Figure 4.11: A leg and the according motor, which is set to move between -30◦and 30◦. If
a force is applied on one side, the origin around which the motor moves is shifted.

amplitude of the signal caused the first motor of the right foreleg to move within wider
angles than the other legs, and bodyweight lead to a shift of the said origin. This resulted
in in the observed right turn of the path trajectory of the robot. To solve this problem
synapse weights were manually changed until the amplitudes of all incoming interneuron
signals were equal as is shown in figure 4.12 (C). The robot’s path trajectory became
straighter after that, but still tended to turn to the right.

It was observed on the physical robot that its hind legs were not equally deflected, i.e. the
right hind leg was constantly kept closer to the robot’s torso than the left one. Although
both received relatively equal input. It was assumed that this was due to the said phase
shift between signals. In 4.12 (A) it can be seen that the signals for both hind legs have
a difference in phase of approximately 180◦. The signals for the hind legs of the altered
CPG this “inversion” was displaced. It was assumed that due to this displacement the right
hind leg was not given enough time to move to its correct position. By changing weights
of the according synapses leading from the inter-neurons to the CPG, it was possible to
adjust the phases of the two hind leg signals. A plot of the result is shown in figure 4.12
(D). After that the path trajectory of the robot was much straighter.
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Figure 4.12: Output of inter-neurons of originally used CPG (A) and CPG altered by
evolution (B). Note that amplitude of signal for the right foreleg in (B) increased. Also
different phase shifts between signals than before, i.e. in (A), are visible. Output of inter-
neurons after amplitudes were equalized (C), and after amplitudes and phase shift between
signals were adjusted (D).
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4.3.2 Stride Length

Because stride length and stride frequency affect the locomotion velocity in animals [Ful93]
it was tested in this work if these two items could contribute to the robot‘s walking speed.
At first the affect of stride length was examined. It is determined by the signal’s amplitude
of the output neurons. Because both leg networks were feed forward, i.e. not containing
re-currencies, the amplitude of these signals could easily be adjusted. Only the weight of
the synapse leading from the interneuron to the leg network had to be changed. The neutral
position of each leg is determined by the bias value of the output neuron. A more upright
position of a leg “elongates” it and can lead to a larger stride length, therefore several leg
positions were also tested. In table 4.3 is listed how the networks were changed, what the
according speed (an average value of 5 trials) was and what was concluded by that. All
changes were applied to the simplified neurocontroller. The order of all given values (e.g.
bias) in the table is according to the introduced motor order in figure 2.6). Figure 4.13
visualizes the reached speed of each network.
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Network Description Speed (cm/s) Conclusion
1 evolved neurocontroller 39.56
2 simplified neurocon-

troller
38.7

3 weights of synapses
from inter-neurons
to legs increased by
adding 0.1 to the
original values

38.28

4 weights of synapses
from inter-neurons
to legs increased by
adding 0.2 to the
original values

38.58

5 weights of synapses
from inter-neurons
to legs increased by
adding 0.6 to the
original values

38.16

6 weights of synapses
from inter-neurons
to legs increased by
adding 0.2 to the orig-
inal value and bias of
output neurons of fore
legs changed. From the
original values of 0.11,
-0.39, 0.5 to 0, -0.7,
-0.2

40.04 Change of bias of fore
legs to a more upright
position is contributes
to walking speed.

continues. . .
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. . . continued
Network Description Speed (cm/s) Conclusion

7 bias of output neurons
for fore legs changed
from 0, -0.7, -0.2 to 0,
-0.39, 0

41.15 The more the fore legs
point into the opposite
direction of the walk-
ing direction, the faster
is the gait. Maybe
because they can ex-
ert more force to the
ground.

8 bias of output neurons
for fore legs changed
from 0, -0.39, 0 to -
0.08, -0.39, -0.1

42.09

9 weights of synapses
from inter-neurons to
hind legs set to 1.4

39.81 An increasing stride
length for hind legs
contributes to overall
speed.

10 phase shift between in-
terneuron signals for
hind legs adjusted

42.38 More time between leg
movement might be re-
quired.

11 phase shift between in-
terneuron signals for
hind legs adjusted and
fixation of 2nd and 3rd
motor of fore legs

40.13

12 as 11 but with higher
amplitude of signal to
first output neuron of
fore legs (from -0.44 to
-0.5)

39.53 2nd and/or 3rd motor of
fore legs should not be
stiff.

continues. . .
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. . . continued
Network Description Speed (cm/s) Conclusion

13 same as 11 with ampli-
tude of signal to first
output neuron of fore
legs set to -0.8

43.41 Greater stride length of
fore legs increases ve-
locity.

14 same as 11 with ampli-
tude of signal to first
output neuron of fore
legs set to -1.2

Not able to walk. Stride length is limited
by motor strength.

15 All insights won by the
above conclusions ap-
plied to one network

43.40

Table 4.3: Adjusting parameters to change stride length. The
order of all given values (e.g. bias) is according to the intro-
duced motor order in figure 2.4.2.

By increasing stride length as described above, an increase in velocity of 3.84 cm/s was
achieved.

4.3.3 Frequency

Stride frequency is determined by the back- and forward motion of a leg. In case of the
Aibo-robot this motion was basically carried out by the first motors, which all received
their signals from the first output neurons. The frequency of these signals therefore in-
dicate stride frequency. Fast Fourier Transformation (FFT) was used to calculate the fre-
quencies of these signals. FFT was applied to a convolution of a 5-second-signal with a
Hanning-window. The primary signal of the first output neuron of the right foreleg os-
cillates 11 times within 5 seconds, thus the frequency is 2.2 Hz.The according Fourier
spectrum is shown in figure 4.14. Amplitude of the signal was determined by calculating
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Neuron Output for first Motor of: Frequency Amplitude

Right Foreleg 2.2 0.3127278
Right Hind Leg 2.2 0.2172463
Left Hind Leg 2.2 0.2419408
Left Foreleg 2.2 0.2931104

Table 4.4: Amplitude and frequency of the incoming signals to all first motors.

Weight Value (Absolute) Velocity (cm/s)

0.16 40.1
0.15 40.88
0.14 42.62
0.13 45.95
0.12 not able to walk

Table 4.5: Measured velocities in relation to the given (absolute) values determining stride
frequency. Higher values indicate a higher frequency and vice versa.

the difference between its maximum (0.3880150) and minimum (0.1982058) value and
then dividing it by two. Hence, the amplitude of the examined signal is 0.2931104.

Table 4.4 lists frequency and amplitude for all according signals. To find out if the result-
ing gait could be accelerated by a higher stride frequency, the frequency of the signal to the
first output neurons had to be increased. In [PHZ03] is described how this can be achieved
by changing w6,5, w5,5, w7,8 and w8,7 (enumerations of neurons is according figure 4.4).
In the initially used CPG the absolute value of these weights was 0.14, increasing them
within certain ranges leads to higher frequencies and vice versa. Smaller and larger values
were tested until the quality of the behavior worsened, i.e. the measured speed became
slower. The results are listed in table 4.5. The fastest gait was achieved when the absolute
value of the said weights was 0.13. The according frequency of the input signal to all fore
legs (calculated as previously described) was 1.8 Hz.
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neuron bias

0 0
1 0
2 0
3 -0.08
4 -0.39
5 -0.
6 1.3020103564406793

Table 4.6: The bias values of the neurons of the foreleg of the manually improved neu-
rocontroller, shown in figure 4.15. The enumeration of neurons is according figure 4.3
(A).

Concluding it can be said that a faster walking speed was achieved by a lower stride fre-
quency.

4.4 The Final Neurocontroller and Speed

The simplified neurocontroller was altered according to the results of section 4.2. That is,
parameters were adjusted to achieve:

• a straighter walking trajectory,

• a larger stride length, and

• an appropriate stride frequency.

The resulting neurocontroller is depicted in figure 4.15 and all according bias values are
listed in tables 4.6,4.7 and 4.16. The enumerations of neurons in these tables is according
the illustrations of fore- and hind legs in figure 4.3 and that of the coupling module accord-
ing to figure 4.4. It leads to a walking speed which is 16.15% faster than the originally
evolved neurocontroller (neurocontroller 4320).
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neuron bias

0 0
1 0
2 0
3 0.1
4 -0.93
5 0.05
6 0

Table 4.7: The bias values of the neurons of the hind leg of the manually improved neu-
rocontroller, shown in figure 4.15. The enumeration of neurons is according figure 4.3
(B).

Team Speed

JollyPochie 405mm/sec
NUbot 410mm/s

UPenn04 415mm/s (estimated 430mm/s)
German Team 400+-3mm/s

Table 4.8: Published speeds of walking behaviors of Robocup teams.

After the simplified neurocontroller had been improved it was tested on the hardware. The
measured top speed of the generated gait by the controller on the physical robot was 47.34
cm/s. In table 4.8 the published velocities of walking behaviors of some Robocup Teams
are listed. Due to the fact, that the used Aibo model, ERS-7, is new, not many teams have
published their results yet.

The speed attained on the robot by means of the neurocontroller is faster than all pub-
lished results listed in table 4.8.

As shown in section 4.2.2 the sensory input incorporated in the hind leg network is not
necessary for a walking behavior. Thus a neurocontroller that does not require any sen-
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sory input for generating a walking behavior was produced. It requires only 20 neurons
and 42 synapses to control 12 degrees of freedom of a quadruped robot. In the generated
walking behavior two different step cycles for fore- and hind legs are carried out, in which
fore legs are observed to pull and hind legs push.
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Figure 4.13: Measured speed achieved by each of the neurocontroller shown in table 4.3.

0 44 89 133 177 221 266 310
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f

a

Figure 4.14: Fourier-spectrum (positive frequencies only) of a 5-second signal of the first
output neuron for the right foreleg. Axis f denotes frequency and a amplitude.
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Figure 4.15: The final neurocontroller.

neuron number bias of improved cpg

1 0
2 0
3 0
4 0
5 0.01745249286257482
6 0.005292848975793777
7 0.0037281823785782577
8 -0.004426097518234096

Figure 4.16: Bias values of the manually improved CPG, shown in figure 4.15. The enu-
meration of neurons is according figure 4.4.
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Chapter 5

Discussion

In the previous chapters the used tools and conducted experiments were
described that lead to a controller for a quadruped robot. The interpre-
tation of the results presented in chapter 4 is the content of this chapter.
Also the assets and drawbacks of the used tools are discussed. General
conclusions that can contribute to future work are drawn. Finalizing the
main achievements and conclusions for future work are summarized.

Artificial Evolution in combination with a simulator was successfully employed to gen-
erate a neurocontroller for a fast walking behavior for a quadruped robot. It can therefore
be concluded that these tools state an adequate means for this purpose. However in section
3 it was described that not all conducted experiments lead to usable results. In this chapter
possible reasons for success and failure of these experiments are identified. Also general
asserts and drawbacks of the used tools are discussed. The results presented in chapter 4
are interpreted. The order in which the said items are addressed is analogous to the order
in which they appeared in this work.

75
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5.1 Artificial Evolution

Artificial Evolution was successfully employed as tool for generating a neurocontroller for
a fast walking behavior. In section 3.3.2 it was found that the evolutionary process could
significantly be accelerated by providing suitable initial leg networks. They caused the legs
of the simulated robot to carry out inverted pendulum like movements. It is assumed here,
that the increase in evolution speed resulted from the cyclic character of this movement.
Walking bases on step cycles, which, as the name implies, must be cyclic. This feature did
not have to evolve time consumingly, but was already introduced by the provided network
structure. A “real” step cycle could evolve from this movement incrementally. It was also
found that pendulum like movements with smaller deflection angles were more suitable.
If the angles were chosen too big the robot fell over what sometimes led to an “extinction”
of this behavior and thus the possible benefit of introducing the initial leg networks was
lost.

It might be argued that this form of imposing an initial structure contradicts to what was
said to be one of the great benefits of AE, namely that it can lead to behaviors without
employing a priori knowledge or bias. That this is not the case, when the network is al-
lowed to be changed by evolution, can be seen when considering the leg networks that
resulted from the initially imposed structure (see figure 3.10). Comparing them to the start
networks (figure 3.6) shows that nothing of the initial structure remained.

In section 3.3.2 it was explained that barriers were incorporated into the environment of
the simulated robot. Therefore a walking behavior was expected that was reactive to its
environment. That this was not the case (the evolved neurocontroller 4320 does not re-
quire sensory input as shown in section 4.2.2) was surprising at first. It is assumed that
the barriers were so low that, when all legs were lifted high enough, no sensory input was
needed to cross the barriers.
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5.2 Simulator

Artificial Evolution was carried out on a simulator, instead of the real robot. The advan-
tages, as listed in section 2.4.1, prevent the hardware from damages and to save time,
applied and contributed to the results. The transfer of the neurocontrollers to hardware
could easily be accomplished, i.e. no further manipulations of the neurocontroller were
necessary.

It was stated in 2.4.1 that the simulator was supposed to contain all relevant features of
the particular hardware of interest. It was found that contact sensors could not be modeled
well with the current version of the used program YARS. This could be improved during
future work. Furthermore in section 3.3.2 it was observed that neurocontrollers that gained
a higher fitness in evolution did not always lead to a faster walking behavior on the real
robot. It was observed that for the speed of walking it was very important in which an-
gle hind legs contacted the ground. If in an appropriate angle, the paws of the real Aibo
could contribute to the force exerted to the ground and thus propel the robot forward with
a greater velocity. The simulated robot did not have paws (compare figure 3.1) which was
later found to be a drawback. They certainly constitute a relevant feature for fast walking
and should be incorporated in the simulation of the robot.

The neurocontroller generated by AE in simulation performed well (39.56cm/s) but a con-
siderably gain in speed (16.15%) was attained when adjusting parameters manually, see
section 4.3. In section 4.3 it was argued that this was justified because no more adap-
tation of the neurocontroller takes place on the hardware. Judging by the gain of speed
after the optimization procedure, it is concluded here that an optimization problem like
that of a fast gait is so hardware-specific that it cannot be modeled adequately by such a
simulation as postulated in section 2.4.1. It is therefore suggested to combine Artificial
Evolution applied to a simulator with a machine learning approach that can be carried out
on the hardware. In such a setup AE can produce a robust behavior that can then be “fine
tuned” for a specific robot. That way the benefits of both approaches can be used and their
drawbacks avoided.
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5.3 The Neurocontroller

Incorporation of a CPG in the coordination module (comp. section 3.3.1) lead to a rela-
tively quick and good solution of the problem (comp. section 3.3.2). Other approaches did
not lead to equally good results, as described in chapter 3. This supports the hypotheses
that a CPG states an adequate mean for fast walking. It is also shown in section 4.2.2 that
no sensory information for the generation of a walking behavior is needed, when a CPG is
present.

In section 4.1.1 it was shown that both leg networks can be transformed into structurally
equal networks. The different step cycles (pulling for the fore legs and pushing for the hind
legs) were the result of only one different sign of the weight of the synapse to the third
output neuron of the hind leg (see section 4.2.2). This shows that no structurally different
leg modules are required for fore- and hind legs in quadrupedal systems.

5.4 The CPG

In section 4.2.3 it was described how CPG output was altered by the input of the inter-
neurons, which lead to a lower output signal frequency. It indicated that a lower stride
frequency (comp. section 4.3.3) contributed to a faster walking behavior. This was verified
in section 4.3.3. The question why a lower stride frequency lead to a faster walking speed
arises. It can be explained by the fact that the output signal which determines the positions
of the motors changes less often with a lower frequency. Thus, the motors have more
time to reach the desired positions provided by the signals, and this leads to a larger stride
length. It can be concluded that an increase in speed by increasing the stride frequency
was impeded by hardware limitations. Faster motors would probably have lead to a faster
gait when using the higher output signal frequency. So the gain of speed in walking was
due to a larger stride length.
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5.5 Summary and Future Work

A neurocontroller for a fast walking behavior for the pet dog Aibo of Sony was generated
by means of a simulator and Artificial Evolution. It was simplified, successfully trans-
ferred to hardware, analyzed and manually improved to generate a faster walking behavior.
The velocity of the resulting gait is comparably fast (top speed: 47.43cm/s, average speed
over 10 runs: 45.95cm/s). The final neurocontroller requires 22 neurons and 44 synapses
to control 12 degrees of freedom of a quadruped robot to. It was shown that a (slower)
walking behavior was carried out when the controller was reduced to 20 neurons and 42
synapses. For the latter no sensory input was required.

It is suggested to combine the used methods, AE and a simulator, with a machine learning
approach that can be conducted on the real robot for an optimization of a behavior. For
future work it is proposed to add a tropism to the walking behavior so that the robot can
move directively towards a given goal.
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