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Abstract—Generalizing objects in an action-context by a robot,
for example addressing the problem: ”Which items can be cut
with which tools?”, is an unresolved and difficult problem.
Answering such a question defines a complete action class and
robots cannot do this so far. We use a bootstrapping mechanism
similar to that known from human language acquisition, and
combine language- with image-analysis to create action classes
built around the verb (action) in an utterance. A human teaches
the robot a certain sentence, for example: ”Cut a sausage with
a knife”, from where on the machine generalizes the arguments
(nouns) that the verb takes and searches for possible alternative
nouns. Then, by ways of an internet-based image search and a
classification algorithm, image classes for the alternative nouns
are extracted, by which a large ”picture book” of the possible
objects involved in an action is created. This concludes the
generalization step. Using the same classifier, the machine can
now also perform a recognition procedure. Without having seen
the objects before, it can analyze a visual scene, discovering,
for example, a cucumber and a mandolin, which match to
the earlier found nouns allowing it to suggest actions like: ”I
could cut a cucumber with a mandolin”. The algorithm for
generalizing objects by analyzing language (GOAL) presented
here, allows, thus, generalization and recognition of objects in an
action-context. It can then be combined with methods for action
execution (e.g. action generation-based on human demonstration)
to execute so far unknown actions.

I. INTRODUCTION

If you ask your four-year old child: ”Cut the sausage
with the knife (for eating).”, the child will normally have
no problems to search for the sausage and the knife on the
table and then try to perform the action (hopefully the knife is
not too sharp). Recognition of objects in an action context is
learned in early childhood. If the child does not like sausages,
you may find yourself in the situation where he/she asks: ”Can
I cut the cucumber instead (because I like it better)?”. Here the
child has obviously recognized a cucumber as a cuttable object
and has generalized the action plan. These – recognition and
generalization in an action context – are major cognitive traits
of healthy humans already at an early age but no powerful
solutions exist so far to transfer these traits to humanoid robots.

In the current study we will present the GOAL1-algorithm
that links the language- with the image domain for general-
izing objects in an action context. Fig. 1 D shows a typical
scene with which our robot is confronted. Even if the robot has
never seen any of these specific items before, the algorithm
allows it to answer the question: ”What can be cut with what?
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(for example: bread with knife) from which an appropriate
action could be started. The algorithm is bootstrapped by
human language, for example a human uttering a (simple)
sentence from where on a generalization process is triggered
making use of large text as well as image data-bases for which
we use the internet. Similar to some other ontologies (partly
used for example in Cyc, see http://www.opencyc.org/), the
action (verb!) in the utterance plays here the decisive, class-
structuring role around which acting and acted-upon entities
are grouped maintaining the semantics of the utterance.

The procedures used in this study for the generalization pro-
cess are anchored in the theory of human language acquisition.
Soon after having learned the first simple phrases, children are
able to perform a process called ”syntactic bootstrapping” [1].
Essentially this amounts to the inference of the meaning of an
unknown word from its grammatical role and the surrounding
context of known words. For example: If a child knows
the meaning of ”fill a cup with water” and then hears the
sentence ”fill a bilauri2 with water”, it will be able to infer
that a bilauri is an object that can be filled (with water).
This is a very powerful generalization mechanism that allows
young humans to quickly learn the meaning of new words
without individual exploration or explicit teaching. Arguably,
syntactic bootstrapping leads to the explosion in the language
acquisition process that occurs around the age of three in a
child [2], [1].

However, a hard problems that remains is how to recognize a
potential ”bilauri” in the scene. For inexperienced children this
amounts to a difficult learning process of structural similarities
of the new ”fillable object” with other, known ones that some
time ago have been filled (or filling has been observed) by the
child. Very little is known about how this is achieved. Luckily,
in the context of an artificial agent we can circumvent this
difficult structural similarity problem and rely on a memory-
based image classification process again using internet data as
”memory”. Different from a young child, a robot can directly
access massive amounts of memory using internet data, or
data from other large data-bases, and this way it can recognize
different objects as shown below.

The goal of the current paper is, thus, to describe the
novel GOAL-algorithm that allows the learning of large action
classes. In some earlier studies we have shown how an action

2This means ”glass” in Swahili, assuming that most readers have not heard
this word before.



Fig. 1. A, C) Pseudo-code overview of the GOAL-algorithm for generalization and recognition. For description of the variables see text; B) Example of list
X for the verb ”slice” and visualization how the noun entries are supplemented by corresponding images. This 3D-list is called verb descriptor Xv [̃I]. D)
Example of the robot setup for the recognition phase.

data base for a robot can be learned from observation [3], [4].
Similar results from human demonstration exist from several
groups [5], [6], [7]. The current paper allows linking such
action data bases to self-generated object classes from which
an execution process can be triggered.

We will first describe the algorithm and its results and in
the discussion section embed this into the current state of the
art.

II. OVERVIEW OF THE ALGORITHM

The GOAL algorithm consists of a generalization and a
recognition process. The key issue is how to generalize from
one suggested action into a complete action class. Fig. 1 A,B
summarizes the main components of the generalization process

(steps G1, G2) and makes the link to the recognition process
(steps G3, G4). The bottom part of the figure (panel C)
addresses the recognition process. The algorithm is based on
the English language but similar principles can be used with
other languages, too. The process is described for one example
(one verb).

A. Generalization

In the first step (G1, parsing) a human enters a simple
sentence similar to the examples above. Such a sentence
should consist of a single phrase with one verb v. Verbs have
a certain valency, hence they are preceded or followed by



Fig. 2. Verb argument generalization results obtained through text-mining.

words, called arguments, to which the verb v refers3. This list
of arguments is first extracted by a grammar parser rendering
a list [x1; ...; xn]v , where n is the valency index (usually
n ≤ 3). For our ”cutting” example from the introduction we
find x1 = sausage and x2 = knife. Essentially [x1; ...; xn]v
captures an action, thus we call it action descriptor av .

The next step (G2, ontology kernel) performs text-based
generalization. To this end any large text data base can be
employed. The data base is searched for sentences l in which
the verb v occurs and we store for this specific verb each
action descriptor instantiation al

v = [x1; ...; xn]lv . Let l be the
5th found sentence, then this descriptor could, for example,
read: a5

cut = [salami, knife]. All al
v are then again stored

in a set {al
v} for later use. Action sets, such as {al

v}, are
the formal way we use to describe the above mentioned
action classes, which the robot is supposed to generate.
Furthermore we extract all argument instantiations xl

k. We do
this for many sentences l and combine all found argument

3Avalent: It rains. Monovalent, n = 1: Paul sleeps., Divalent, n = 2: Betty
kicks the ball, Trivalent, n = 3: The robot cuts the salami with a knife, etc.
Valency can change for the same verb. For example, ”cutting” can be tri- or
divalent (see Introduction), but this does not affect the algorithm.

instantiations into a non-recurring set writing them into list
Xv = [xk,i] (see Fig. 1 B). For example things to cut are:
x1,(.) = {salami, cucumber, carrot, bread, wood,...}. Things
with which you can cut are: x2,(.) = {knife, cleaver, saw,...}.
Individual rows of this list are normally of different length,
hence mi 6= mj for i 6= j. If sorted by occurrence frequency
one finds that mostly less than 10 arguments are common.
Thus, this represents the kernel of a verb-based ontology,
where verbs are encoded as classes (or concepts or categories,
which are often used synonymously) in addition to nouns.

Step three (G3, picture book) links generalization to
recognition. For this we perform for every instantiation xk,i

an image search using any large image data-base. This way
we attach to every noun instantiation of each argument a list
of images Ik,i = {I1; ...; Irk,i

}. This way we have effectively
created a large picture book about (for example) ”What
can be cut by what?”. If correctly built then all possible
combinations of images from x1 with those from x2 represent
a potentially valid cutting action. As shown below, this
picture book allows an agent to actually recognize in the
visual scenery potential objects to be used for a given action.
Fig. 1 B provides a summary of the data structure that has
been generated by steps G1-G3.

In step four (G4, classification) an image classification
procedure is used to extract and represent the complete image
class by its class label Ĩk,i. This is done for every instantiation
xk,i. A quick estimate4 shows that picture book storage does
not produce any capacity problem for more than 1000 verbs
hence going far beyond the requirements for generalization
of (for example) the corpus of ”Simple English” [8], [9].

This ends the generalization process. This way we have finally
received a verb descriptor Xv [̃I] by which potential actions are
encoded.

B. Recognition

The recognition part is depicted in Fig. 1 C. Step R1 of
this process is simple. Either one gives the robot a command,
for example: ”Please, cut something!”, or the robot has by
some other means an existing plan for a certain action. At
this stage the system needs to extract the verb v and the
corresponding verb descriptor Xv [̃I].

4A rough storage estimate can be obtained as follows: Let us consider
1000 divalent verbs. Reasonable generalization for every day use should be
obtained with about 20 instantiations per valency. Good image representation -
according to our experience – needs 200 pictures of 0.5MB per instantiation
each. Thus, we get 1000 × 2 × 20 × 200 × 0.5MB = 4.0TB. Given that
many instantiations frequently re-occur, because the same noun can be used
in many different sentences, it is fair to divide this number at least by 5,
getting less than 800GB of required storage for about 1000 verbs without
any compression. When using feature-based storage (e.g. with SIFT features)
this is reduced by a factor larger than 10, leading to just 80GB of required
storage. Simple English contains about 2000 − 3000 words [8], [9] hence
far less than 1000 verbs. Thus, generalization should be possible far beyond
Simple English use.



Step R2 takes a camera image R and segments it into those
regions that represent single objects. Any advanced computer
vision image segmentation procedure can be used here [10],
[11], [12]. This way, we receive subparts IR

j , j = 1, · · · , p of
the original image.

In step R3 we test every image subpart IR
j whether

it belongs to any image class Ĩk,i from step G4. Once
classification is successful we use the mutual correspondence
Ĩk,i ↔ xk,i (step G4, above) and we extract from the list
Xv all corresponding noun instantiations xk,i, which belong
to the image subparts. For example, let IR

j be an image of
a salami. Then it will be classified as IR

j ∈ {Ĩ1,1 ↔ x1,1},
where x1,1 represents the noun ”salami” (see Fig. 1 B), which
is one possible first argument (k = 1) in the sentence: ”Cut
the x1,1 = salami with a x2,i = unspecified.”, where we
still have to search for a possible second argument.

Step R4 takes all recognized instantiations xk,i and
creates action descriptors aj

v of potentially executable
actions where j is one possible combination of arguments:
aj

v = [x1,(.); x2,(.); ...; xn,(.)]jv . We store all aj
v in the action

set {aj
v}. All combinations of instantiations are allowed. This

way sentences like: ”Cut the salami with a knife.”, ”Cut the
wood with a saw.” but also ”Cut the wood with a knife.” are
obtained.

Step R5 is optional. We can rank the occurrences of actions
suggested by the recognition process {aj

v} and also check
which of them are represented in the earlier stored action set
from the generalization process {al

v}. Likely, sentences like
”Cut the wood with a knife” have never been found in the
data-base and can this way be ruled out. It may, however, also
be of interest to allow for the complete action set without this
deletion step, as without deletions the set {aj

v} might contain
novel valid actions not observed in the text search.

III. PROCESSING AN EXAMPLE

The goal is to allow the robot to arrive at useful action plans
when looking at the scene in Figure 1 D.

We use an example similar to above: ”Slice the sausage with
a knife”. We use ”slice” and not ”cut” as it is more specific
making the text search easier. For steps G1 and G2 we take
the Natural Language Processing Toolkit from Python. The
sentence has the following grammatical structure, expressed
by regular expressions:

{< V B.∗ >< DT >? < JJ > ∗ < NN.∗ >< IN >

< DT >? < JJ > ∗ < NN.∗ >},

where < V B.∗ > is a verb of any tense and voice, < DT >?
a 0 or 1 determiner (”the”, ”a”). < JJ > ∗ is any number
of adjectives, < NN.∗ > represents any declined noun and
< IN > exactly one preposition. For this sentence < JJ > ∗
remains empty and we get two instances of < NN.∗ >, which
represent x1 = sausage and x2 = knife.

Step G2 performs internet-based text search using the fol-
lowing strings: ”Slice the < JJ > ∗ < NN.∗ > with a
knife” and ”Slice the sausage with a < JJ > ∗ < NN.∗ >”.
We use the first 200 web-pages found for each of the two
strings and extract occurrence frequency histograms for the
nouns (Fig. 2). The first 10 entries for each argument x(1,2)

are used as instantiations x(1,2),i. One can see that the most
frequent ones are indeed appropriate. Errors occur for example
with noun modifiers (”children” really meant ”children knife”
in this entry). To solve these problems better parsers (e.g.
predicate-argument parsing [13]), could be used.

Steps G3 (picture book) and G4 (classification) requires
image search as well as image data-base cleaning. For this
we use the VLFeat Package [14] and perform feature-based
classification by the use of the Support Vector Machine
available in VLFeat. Visual features are pyramid histogram of
edge orientations gradients (PHOG) and pyramid histogram
of visual words (PHOW), which are based on the well known
SIFT (scale invariant feature transform) framework [15], [16].
In Fig. 3 we show the confusion matrix for 7 examples from
a total of 250 pictures per class corresponding to words from
parts of the set belonging to argument 1 (sausage&similars)
and argument 2 (knife&similars). In addition we have included
a set of images of cups, which is not an argument of the
verb ”slice”. The results demonstrate that reasonably well
distinguishable image classes Ĩ can be obtained and that other
objects (cups) can also be discriminated. This concludes the
generalization part of the algorithm.

For testing we have recorded 9 uncluttered images from
different views similar to the setup in Fig. 1 D with as-yet
unknown objects that potentially belong to the two arguments
x(1,2),i of the verb ”slice”. Fig. 4 shows one example from
those 9 images used for analysis. For step R2, we used a
variant of our standard image segmentation algorithm [12]
including a foreground-background segmentation stage. As
uncluttered scenes were used this renders 8 separate image
sub-parts IR

(1,2,...,8). Bounding boxes are drawn in the Figure
only for graphical reasons. For step R3, we use the classifier
trained in step G4 and classify subparts IR

1 as ”potatoes”, IR
2

as ”cup”, IR
3 as ”mandolin”, IR

4 and IR
5 as ”unknown”, IR

6 as
”bread”, IR

7 as ”knife” and IR
8 as ”unknown”. This assessment

is based on a voting scheme using all 9 different camera views.
Voting is required, because state of the art image classification
do on average not reach more than 60% recognition rates
(like our method). The peeler, we used, seems to deviate too
much from the examples with which the classifier was trained
and could not be recognized. Such a behavior is sometimes
to be expected given the current state of the art in image
classification.

Step R4 is straightforward. It performs the re-combination
of the different recognized arguments into valid sentences,
which are: slice a (1) bread with a knife, (2) bread with
mandolin, (3) potato with knife, (4) potato with mandolin.
These are potentially meaningful actions, but - as discussed
above - some are not really useful (bread with mandolin).

In Step R5 we compare the suggested actions with the ones



Fig. 3. Image classification results and examples from picture book.

found in G2 on the internet and we find that, indeed, the
sentence: ”Slice (a/the) bread with (a/the) mandolin.” has not
been observed. This allows ruling this action out.

Alternatively the machine would have to try the action out,
or it would – like a child – have to ask: ”Can I slice a bread
with a mandolin?”. It is important to realize that the GOAL-
algorithm does indeed provide us with largely reasonable early
guesses about valid actions, thereby being able to guide an
agent through the vast richness of perceived objects. But final,
conclusive evidence about the validity of an action cannot be
expected.

IV. DISCUSSION

In the current study we have suggested a bootstrapping
algorithm which leverages from the structure of language
combining it with image classification for the generalization
and recognition of large action classes. It is based on minimal
supervision and can, thus, be included in dialogue-based robot
interaction. Extension of the robot’s data base for action
classes is induced by human speech. The potential for dialogue
is discussed below (Error Handling and Extensions) as a means
to efficiently extend the capabilities of the algorithm.

Fig. 4. Recognition results for a scene observed by a robot.

The strength of the GOAL-framework lies, thus, in this
interactive aspect but especially in its conceptional simplicity:
the sequence of the individual bootstrapping steps (G1-G4;
R1-R4) is straightforward. These two aspects form the basis of
the algorithm, where it is important to note that the individual
components (language and computer vision analysis) can be
continuously improved making the algorithm open-ended. As



soon as available, more complex computer linguistic methods
can be used to parse more complex sentences, or more
complex scenes can be analyzed with improved computer
vision. In addition, the GOAL-framework can be linked to
robot execution (discussed below).

A potential weakness is that many individual steps have
to be performed which can produce inappropriate results and
currently the framework has been tested only with a small
set of examples. In general, as with all cognitive algorithms,
exhaustive testing can only ”come through use”. There are no
benchmarks existing and correctness can only be assessed by
the robot’s human counterpart. This will take several years.

At the moment we can assess potential errors of the different
components from a small set of experiments and find that steps
G1, G2 and R1 are performed with few errors only. These
arise for example from a wrong treatment of noun-modifiers
(”children’s knife”) or other similar effects. Many such errors
can be removed by using a more advanced parser. In general
we will in the future continue to use only simple sentences
and advanced computer linguistics can deal with this level of
complexity essentially in an error-free way. It is important to
note that the complexity of the analyzed sentences does not
necessarily improve the bootstrapping process as such.

Computer vision analysis is potentially more problematic.
For steps G3, G4, and R3, we obtain currently a classification
accuracy of about 60%. The problem can be mitigated by
introducing thresholds and enabling classifier to produce ”I
don’t know” output. In a robot application false positives are
not acceptable but ”dunno” is usually ok because the robot can
continue to explore the scene (active vision!), getting better
views of the unrecognized object thereby being able to finally
classify it.

A. State of the Art

Massive efforts exist since a few years to make the internet
available to robots and to adapt it for their specific needs
(see http://www.roboearth.org/). The underlying approaches
are quite different from what we are trying to achieve here,
because GOAL combines image classification with text-based
generalization to enrich a robot’s action space by forming
large categories of potentially executable combinations of
objects with actions. Image classification and text mining are
heavily researched. Common-sense knowledge from targeted
databases has already been applied in robotics [17], [18]. But
as far as we see the literature background, we come to the
conclusion that the specific combination of text and image
base mining we are proposing has been very little investigated
in the context of robotics [19].

Many of the individual components that we have used for
this algorithm are now common standard (like simple parsers
for text mining, SIFT-related features for image processing,
SVMs for classification, etc.) and require no further discussion.
At the moment we have not yet paid too much attention to
any better and more optimal choice of such components. This
notwithstanding, this paper shows that even with simple ones
already promising results are obtained. Clearly the underlying

problems of general text mining or general image classification
remain exceedingly difficult, but we think that the core of our
algorithm will only benefit from future improvements.

The main scientific link, which has spawned this idea is
the above discussed syntactic bootstrapping [1] in language
acquisition (see Introduction). Another link exists to con-
tent dependent image classification and retrieval [20], [21].
Though general content-based image retrieval is still largely
unresolved, in limited domains like our manipulation scenario
it is possible to obtain good enough results for developing
experimental applications.

Essentially, our approach can be best understood as partly
supervised generation of an action-based ontology (specifi-
cally, verb-based ontology) using automatic and conjoint text-
image mining. Much work has been done concerning ontolo-
gies, where most of them are noun-based [22], [23] and often
rely on expert knowledge [24]. We rely on recent trends to
extract knowledge from texts automatically [25]. In our system
ontology kernels arise automatically linking a verb to its
possible arguments, where the relevant set of verbs is provided
through human supervision. Obviously statements like ”Cut
the wood with a knife.” and other even more nonsensical
ones are possible, too. But the strength of the algorithm is
that such sentences could either be ruled out by step R5
(deletion) or, due to the link to robotics, such statements
could be tried out (by trying this out with the machine) or
dialogue could be engaged asking whether or not an action is
feasible, or as a forth possibility, more advanced reasoning
could be employed after enriching the ontological kernels
with additional information (”wood is hard”). We see a major
strength of the algorithm that it is open to such extensions.
Furthermore, using a verb-based structure makes combined
text-image mining feasible as verb-arguments (usually nouns!)
can be image-searched for while searching for verbs is less
”pictorial” and will in general not work.

B. Algorithmic Extensions: Error Handling and Extensions by
Dialogue

When generalizing the sentence: ”Fill the cup with water”,
the system is troubled by the fact that pictures of water and its
similars classify in a way which is useless for a filling action.
This is due to the fact the pictures of water usually show
rivers, lakes, or splashing water whereas for a filling action we
would have to search for water in a container. The algorithm
will, however, produce a class from the first, useless set of
examples. Thus, when asked to perform a ”filling action”,
water&similars will not be found and the agent should respond
with: ”I do not recognize water or similar items?” This prob-
lem could be solved by combined search, for example using
”water fill” as string, or - more interestingly - by again using
GOAL: To the robot’s question the supervisor should answer
by the sentence: ”Water is contained in buckets.” The GOAL-
algorithm can generalize this sentence in the same way, where
after step G2 an ontological link emerges. We receive: ”Fill
the cup&similars with water&similars” and ”water&similars
is contained in buckets&similars”. Thus, with any reasonably



good logic reasoner we can infer: ”Fill the cup&similars with
water&similars, which is contained in buckets&similars”. The
ontology kernels, which are created by GOAL (G2) are verb-
centered, and many verbs can take the same arguments. Thus,
action chains naturally emerge. This opens the framework
up for extending the kernels into a true ontology on which
reasoning mechanisms can operate.

Other problems exist, for example syntactic ambiguities
(”Cut the meat with the onions and the carrots.”), which
need to be resolved by better semantic understanding for
which tools like WordNet [26] might help but especially this
could be achieved by human-robot dialogue, which may in
addition be used to resolve other language- as well as image
recognition problems. The aspect that already the generation
of the ontology is guided by a human makes such an extension
into more elaborate human-robot dialogue quite appealing.

C. The Link to Execution

Much work has been done in the last years to arrive at
robot-compatible descriptions of human actions. Mostly this
has been achieved by learning from demonstration [27],
[28] and several frameworks exist which allow encoding
trajectories and required poses to perform a certain action
[29], [30]. One of the main remaining difficulties is to
associate appropriate objects to an action. The algorithm
presented in this study tries to address this problem as it
allows finding the arguments of a verb and the associated
objects in a visual scene by which it can be linked to
execution and first results for simple actions exist [31].
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