
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 1

The Driving School System: Learning Automated
Basic Driving Skills from a Teacher in a Real Car

Irene Markelić, Anders Kjær-Nielsen, Karl Pauwels, Lars Baunegaard With Jensen, Nikolay Chumerin,
Aušra Vidugiriene, Minija Tamosiunaite, Alexander Rotter, Marc Van Hulle, Norbert Krüger,

and Florentin Wörgötter

Abstract—We present a system that learns basic vision based
driving skills from a human teacher. In contrast to much other
work in this area which is based on simulation, or data obtained
from simulation, our system is implemented as a multi-threaded,
parallel CPU/GPU architecture in a real car and trained with
real driving data to generate steering and acceleration control
for road following. In addition it uses a novel algorithm for
detecting independently moving objects (IMOs) for spotting
obstacles. Both, learning and IMO detection algorithms, are
data driven and thus improve above the limitations of model
based approaches. The system’s ability to imitate the teacher’s
behavior is analyzed on known and unknown streets and the
results suggest its use for steering assistance but limit the use
of the acceleration signal to curve negotiation. We propose that
this ability to adapt to the driver has high potential for future
intelligent driver assistance systems since it can serve to increase
the driver’s security as well as the comfort, an important sales
argument in the car industry.

Index Terms—imitation learning, driving, real-time system,
independently moving object, advanced individualized driver
assistance system

ADVANCED driver assistance systems (ADAS) that adapt
to the individual driver have a high potential for the car

industry since they can reduce the risk of accidents while
providing a high degree of comfort. Conventional systems are
based on a general moment to moment assessment of road
and driving parameters. To arrive at a judgment of the current
situation they use control laws from which they derive output
signals to aid the driver [1]–[4]. However, inter-individual
differences in driving can be large, e.g., it is known that
different people pursue different driving styles, [5], and driving
strategies [6]. It is difficult for conventional control systems
to accommodate these differences which leads to suboptimal
driver support. However, this can have negative effects on the

I. Markelić and F. Wörgötter are with the Institute of Physics 3, Georg-
August-University Göttingen, Germany, Friedrich-Hund Platz 1, D-37077
Göttingen, Germany (e-mail: {irene, worgott}@physik3.gwdg.de).)

A. Kjær-Nielsen, L. Baunegaard With Jensen and N. Krüger are with
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark (e-mail: {akn, lbwj, nor-
bert}@mmmi.sdu.dk).

K. Pauwels, N. Chumerin and M. Van Hulle are with Katholieke Univer-
siteit Leuven, Herestraat 49, bus 1021, BE-3000 Leuven, Belgium (e-mail:
{Karl.Pauwels, Nikolay.Chumerin, Marc.VanHulle}@med.kuleuven.be).

A. Rotter is with Hella KGaA Hueck & Co, Rixbecker Str. 75, D-59552
Lippstadt, Germany, (e-mail: Alexander.Rotter@hella.com).

A. Vidugiriene and M. Tamosiunaite are with the Vytautas Mag-
nus University, K.Donelaicio g. 58, LT-44248, Kaunas, Lithuania (e-mail:
{m.tamosiunaite,a.vidugiriene}@if.vdu.lt).

Manuscript received March 12, 2010
This work has been supported by the European Commission under project

FP6-IST-FET (DRIVSCO) and by the BFNT Göttingen.

driver’s behavior [7], [8], i.e., safety is decreased instead of
increased. Observations like these were the motivation for us
to investigate and build a system that drives in the same way as
its user(s). These reasons also lead to the situation that current
R&D efforts of the car industry focus on systems which take
the driver and its behavior explicitly into account [9], [10].
In addition to the safety aspect, such systems will also be
accepted more easily by the user because they will provide
more comfort; an important sales argument.

In the current study we will describe a system based on
imitation learning, hence, a system that learns to interpret
basic aspects of the road (lanes) in the same way as its driver,
reproducing the driver’s actions. In addition we demonstrate
its use as a basic driver assistance system by issuing warning
signals if the driver deviates from his/her predicted default
behavior. The so-called DRIVSCO1 system is realized by a
multi-threaded, parallel CPU/GPU architecture. It is vision
based, operates in real-time on real roads and also includes a
novel form of data driven detection of independently moving
objects (IMOs). The system has been designed for the use on
motorways and country roads.

Before describing the details of our system and comparing
it to the literature (see State of the Art), we will shortly explain
its structure as a guideline for the reader (Fig. 1). Thus, this
paper is organized as follows: in Section I the overall structure
of the system is presented. It is compared to the state of the
art in Section II, its realization explained in Section III and
results presented in Section IV. In Section V we conclude and
discuss the presented work.

I. SYSTEM OVERVIEW

The overall structure of the DRIVSCO system is shown in
Fig. 1. The yellow box, “human sense-act”, symbolizes the
human driver who senses the environment, denoted by the
“world” box, and responds to it with adequate driving actions,
“act”. At the same time the system senses the environment,
“system sense”, via recorded image frames. The sensing
process consists of detecting left and right street lanes, “sense
lane”, and IMOs, “senseIMO”. The latter refer to objects that
move with respect to the static environment, where detection
is not restricted to predefined objects such as other cars or
motorcycles. If an IMO is detected a warning is triggered,
“warning IMO”, if it is considered to affect the driver (see
Section III-D). Once lane detection is initialized it is compared

1short for Driving School.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 2

Fig. 1: Block diagram of the DRIVSCO overall system struc-
ture. The notation t− 1 indicates an earlier time frame.

to a prediction about the expected lane positions, “generate
lane expectation”, which is obtained by using previously
captured human action data and the previously detected lane,
indicated by the notation t − 1, to predict the current lane
structure. This way incorrectly detected lanes can be filtered
out (see Section III-E). The learning system is realized by
the perception-action repository, PAR, depicted as the gray
container in the figure, which serves as the system’s memory
where it can store its observations and retrieve them at a later
stage (see Section III-F). The experience stored in the PAR is
a state vector containing a concise lane description extracted
from the current image frame and sequences of preceding
and succeeding action data. Thus, there are two modi: 1)
training, during which the system gathers experience to fill
the PAR, denoted in blue “system training mode” (explained
in Section III-F2), and 2) retrieval during which the system
queries the PAR to retrieve stored knowledge denoted in green
“system query mode” (see Section III-F3). Since the goal is
to learn lane following, i.e., context-free driving, training the
PAR requires the recorded data to be filtered to free it from
context-dependent scenes, comp. Section III-F1. This makes
the training phase a demanding procedure which is done off-
line, i.e., not during driving. The retrieval mode however, can
be used off- and online. Based on accumulated PAR returns,
action plans for expected human steering and acceleration
behavior for lane following are predicted, “prediction of action
sequences” (see Section III-F4). To demonstrate the system’s
use as an assistance system the predicted action sequence is
compared to the driver actions and a warning is issued if they
are differing too much, “warning driving” (see Section III-F4).
In other words, the driver is informed when deviating from his
or her learned default driving behavior. The warning signals
are displayed on a screen close to the driver, shown in Fig. 2c
and 4.

II. STATE OF THE ART

Since our work aims at generating sequences of future
driving actions based on visual sensory input it is closely
related to vision based autonomous driving. Many approaches
in this field rely on control theoretic white-box methodologies,
i.e., they are based on predefined analytical models and control

laws. This has led to some well performing systems, e.g., [11]–
[14], however, drawbacks are the dependency on predefined
knowledge, and the difficulty of developing models and control
laws which restricts the design process to experts. In addition
these systems do not, or only in a limited way, provide a
means for individualization. By contrast, imitation learning
[15] aims at extracting a policy for a given task by using
examples provided by a teacher. This reduces the amount
of required a priori knowledge and the need of explicit
programming and thus facilitates human computer interaction.
A famous example of imitation learning for driving is the
ALVINN system [16]–[19] where actions of a human driver
were associated with concurrent visual input from a camera
via a neural network. The inputs to the network were the
pixel values of the (downscaled) camera image and the output
was a distribution of steering angles. Velocity control was
handled by the driver. Further imitation learning work by
Pasquier describes the learning of several driving skills with
a fuzzy neural network [20]. Such motor skills are difficult
to formalize and the fuzzy net represents a way of capturing
semantic rules from continuous control input. It was aimed
at emulating the role of the cerebellum during cognitive skill
learning, and the algorithms for lane following were tested in
simulation. Similar work, but dealing with helicopter flying,
was reported in [21]. A novel form of inverse reinforcement
learning [22] was introduced in [23] and applied to learning
particular driving styles from example data obtained from
simulation.

The EU funded project DIPLECS [24] reports similar goals
to ours, however, DIPLECS does not aim at building a
complete system. Research conducted at Motorola [25] aims
at building an adaptive driver support system using machine
learning tools. Its architecture was partially implemented in a
prototype system built upon a simulator.

In addition to lateral control (steering), new generations of
driver assistance systems will contain support for longitudinal
control (velocity) during curve negotiation, e.g., [26]. Current,
(non-imitation based) methods are usually not taking the street
trajectory into account but simpler aspects like an obstacle
in front (e.g., Adaptive Cruise Control systems using radar
or laser for obstacle detection), known speed limits (e.g.,
Intelligent Speed Adapters and Limiters [27]) or leading
vehicles (e.g., [28]). Focusing on curve negotiation and based
on imitation learning are [20], [29] and [30], which all employ
fuzzy neural networks trained on human control data.

Our work, unlike similar approaches, describes the real-
ization of a complete system implemented in a real car that
learns the prediction of action plans, i.e., sequences of steering
and acceleration actions, together with a novel form of IMO
detection. One big difference to others is that we use data
obtained from real car driving and not from a simulator.
(Most of the presented algorithms were first tested on a robot
platform as reported in [31].) By contrast to the implicit
mapping between sensory input and actions achieved with
the neural network in the ALVINN project, our lazy learning
approach [32] realized by the PAR allows the preservation
of human interpretable information processing at all stages.
Although this comes at the cost of having to store more data,

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 3

a b c

Fig. 2: System integration in the car. (a) Mounting for the
stereo camera system. (b) Fixation of the computer in the
trunk. (c) Installation of the monitor in the car.

it is highly beneficial concerning intuitive error analysis.

III. SUBMODULES AND METHODS

A. Hardware

The used car is a Volkswagen Passat provided by the
DRIVSCO partner Hella KGaA Hueck & Co (Lippstadt, Ger-
many). The following sensory data is accessed via the CAN-
bus: steering angle, indicating the steering wheel’s position
and taking values between −360◦ (left steering) and 360◦

(right steering), velocity in km/h, longitudinal acceleration
taking values between −10m/s2 and 10m/s2, and curve radius
measured by a gyroscope and taking values between −15000m
and 15000m. Furthermore a camera stereo rig is mounted
behind the windscreen as shown in Fig. 2a. We use two color
Pulnix TM-1402CL cameras which deliver 1280×1024 raw
Bayer pattern images at a frequency of 20 Hz. Furthermore a
Global Positioning System (GPS) receiver was added to allow
the visualization of driven routes, for which we used Google
Maps, comp. Fig. 6. All computations are carried out on a PC
with an Intel Core i7 - 975, 3.33 GHz quad–core processor
with Simultaneous multi-threading (SMT) enabled and 12 GB
RAM. The used graphics cards are an NVIDIA GTX295 for
computation and a smaller one for displaying purposes. The
PC is kept in the car’s trunk as shown in Fig. 2b and the output
of the system is shown on a screen next to the steering wheel
as shown in Fig. 2c.

B. System Architecture

The backbone of this work is its realization as a multi-
threaded, pipelined real-time system where shared memory is
used for interprocess communication. Due to the complexity
of the pipeline structure and the involvement of multiple
CPU-cores and multiple GPUs in its computation, we have
developed our own modular architecture. By simplifying the
coordinated use of the heterogeneous computational resources
in modern computers, this architecture allows for indepen-
dent development of the individual processing stages. To our
knowledge, no such CPU/GPU pipeline framework combining
task- and data-parallelism exists, allowing a stage to share
data with multiple other stages — e.g., the output of the
preprocessing stage is used by both ”lane detection” and
”dense vision”, as seen from Fig. 3. The system structure from
Fig. 1 is realized by the architecture shown in Fig. 3. Each
information processing entity is referred to as a stage and runs
in a thread as indicated. All stages are connected through a

Fig. 3: The realization of the DRIVSCO system. Boxes denote
processing stages and the dashed frames indicate individual
parallel threads. Arrows denote the information flow, with the
exception that the display stage connects to all stages. The
”PAR“, ”dense vision“ and ”IMO detection“ are key parts of
this system. The notation t−1 indicates an earlier time frame.

pipeline where communication is realized by shared memory
buffers to which processes can write to and read from. The
processing time of each individual stage is below 50ms and
the entire system works at the camera rate of 20 Hz. The
“preprocessing”, “dense vision” and “IMO detection” stages
involve massive computations but achieve a frequency of 20
Hz through the use of two GPUs while all other processes run
on the CPU. The “CAN-bus capture” stage is triggered every
50ms and makes the relevant car CAN-bus data available to
other processes. During the “image capture” stage raw camera
data is received and white level calculations are performed
to control the camera’s shutter time. The images are then
undistorted, rectified and downsampled to 640 × 512 pixels
during the “preprocessing”. The boxes “lane detection”, “dense
vision” and “IMO detection” are explained in Section III-E,
III-C, and III-D in detail. In addition a special display unit
is integrated which connects to all buffers in the pipeline
allowing the user to view the output of any stage, including
the generated warning signals by means of a graphical user
interface (GUI). A screenshot of this GUI is given in Fig. 4.

It shows a current image with detected lanes on the left,
and a history and prediction of steering angles of two seconds
on the right. The prediction is plotted in blue and the actual
human steering in red. In addition the computed egomotion
from the IMO detection stage is displayed in green. The gray
dashed boundaries around the prediction indicate predefined
threshold values used to issue a warning if exceeded by the
actual driving. In this case the ”unexpected driving” button
below the displayed lane detection image is flashed. The
system can also conveniently be used in an off-line mode to
replay recorded scenes which is important for error analysis.
Note, this display is designed for R&D purposes and should
be simplified for a real driver assistance system.

C. Dense Vision

The visual cues used for the IMO detection are computed
during the “dense vision” stage, see Fig. 3. Dense vision
algorithms process the visual signal in its entirety, as opposed

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 4

Fig. 4: One tab of the system GUI, showing the detected lanes
in the current image on the left and a history of prediction
and steering angles of two seconds on the right along with the
computed egomotion. Thresholds are shown in gray.

to sparse vision algorithms that only operate on interest
points such as edges or corners. The cues used here are
dense disparity (the horizontal difference in image location
for corresponding pixels in the rectified left and right image)
and optical flow (the 2D image motion of each pixel). The al-
gorithms used rely on the phase of quadrature pair Gabor filter
responses [33] (Fig. 5B), extracted at multiple orientations and
scales, to establish correspondences. The GPU implementation
[34] of a phase-based algorithm [35] is used to compute optical
flow (Fig. 5C). This algorithm integrates the temporal phase
gradient across orientation, and gradually refines its estimates
by traversing a Gabor pyramid from coarser to finer levels.
The optical flow is computed for the left video stream only.
The dense disparity algorithm (Fig. 5D) is very similar to
the optical flow algorithm but operates on phase differences
between the left and right image as opposed to temporal phase
gradients. These aspects are described in more detail in [36].

D. IMO Detection and Warning

Recent (off-line) approaches for the detection of IMOs have
achieved very good results using model-based techniques [37],
[38]. One limitation of such approaches is the difficulty to
detect IMOs early on. Distant objects will occupy only small
patches in the image that are difficult to match to the model.
Another limitation is that moving objects, for which no model
is provided, cannot be detected and are simply ignored by
the system. In this work we rely on a model-free detection
mechanism that is more general in the sense that it will respond
not only to cars, but to any sufficiently large (11× 11pixels)
moving object. The IMO detection component combines
dense vision cues (optical flow and stereo, see Section III-C)
in real-time to compute egomotion (the rotation and translation
of the camera) and independent motion (the parts of the image
that move with respect to the static environment) to detect an
IMO in front.

The whole process is complex and cannot be described in
detail in the current paper. Please refer to [39] for further infor-
mation. Here, we will give only a short overview summarized
in Fig. 5. A nonlinear instantaneous-time model [40] is used

left image

dense stereo
horizontal vertical

E egomotion

independent motion IMO in front W
A
R
N
I
N
G

left Gabor right Gaborright image

optical flow

A B

C D

F G

Fig. 5: Real-time IMO detection. Multi-orientation, multiscale
Gabor filter responses (B) are extracted from the stereo image
pair (A) and used to compute dense optical flow (C) and
stereo disparity (D). The horizontal and vertical optical flow
is color-coded from -15 (dark red) to +15 pixels (dark blue)
and the stereo disparity from -50 (dark red) to +20 (dark
blue) pixels. Combined with egomotion (E, extracted from
the optical flow, not shown) these cues allow the extraction of
independent motion (F, likelihood increases from blue to red).
This independent motion signal is gathered in a fixed region
of the image (G) and when it exceeds a threshold, a warning
is issued.

to extract egomotion from the optical flow. To obtain optimal
estimates, an iterative minimization procedure is used that
relies on M-estimation [41] for outlier compensation. A total
of 32 different initializations are explored to deal with local
minima. The data-intensive parts of the algorithm run entirely
on the GPU. Independent motion is detected by evaluating the
depth/flow constraint [42] at each pixel. Deviations from this
constraint point to inconsistencies between the optical flow,
disparity and egomotion and result from noise or independent
motion. The deviations are assigned to independent motion if
they comply with a 3D translation model in a local region
surrounding the pixel (Fig. 5F). To detect a moving vehicle
in front, the (pixelwise) independent motion signal is accu-
mulated inside a fixed region in the image (blue rectangle in
Fig. 5G). A warning is issued when more than 30% of the
pixels within this box are considered independently moving.

E. Lane Detection and Filtering

A large number of lane detection algorithms has been re-
ported which can roughly be divided into feature- and model-
based methods, see e.g., [2]. The former detect street lanes

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 5

bottom-up, i.e., based on certain low-level features like inten-
sity gradients, edges, color etc. e.g., [43], whereas the latter
aim at identifying image parts corresponding to a predefined
lane or street model, e.g., [44], [45]. Both approaches have
known advantages and disadvantages, feature-based methods
can detect arbitrary shapes but might add erroneously detected
image parts into the returned street detection. The more re-
stricted model-based methods are more robust to disturbances
like occlusions, noise and shadows, however they are restricted
to predefined lane shapes making them less flexible. To detect
lanes in incoming image frames we employ a simple and fast
(real-time, i.e., 20Hz) feature-based algorithm which works
similar to contour tracers used in computer vision. First, edges
and pixel orientations are computed by using standard com-
puter vision techniques (Canny and Sobel operator, [46], [47]).
Second, line segments are constructed by joining nearby edge
pixels with similar orientations. Then, nearby line segments
are further joined resulting in longer lines. Thus, a list of
lines which might contain small interruptions is obtained. The
parametrization of a lane can be seen from Fig. 7a.

The left and right lane are expected to be the longest of
these lines starting in a particular area at the bottom of the
image. During initialization this area is determined manually,
and further tracked using a Kalman filter [48]. This is very
simple and requires almost no a priori knowledge or initial
image preprocessing, i.e., it works on raw intensity images
containing street lanes from a single camera. To correct against
false positives we apply an additional filter which uses 3D
information to verify if the detected lane is on the ground
plane. This is achieved by using the computed dense stereo
map (see Section III-C) which attaches 3D information to each
point of the extracted lane in form of disparity values. There
is a linear relationship between disparity values and horizontal
image coordinates and the filter checks whether the extracted
lane fulfills this criterion. Since the disparity contains noise,
we use RANSAC [49] to fit a line to the disparity data of the
extracted lane. If an estimate with slope in a tolerable range
can be fitted, we believe that the lane is on the ground plane,
otherwise it is rejected.

As indicated by the entry “generate lane expectation” in
Fig. 3 a final feedback mechanism aids the stability of the
lane detection by generating lane expectations based on the
human behavior. The velocity and steering angle of the car is
used to derive its Rigid Body Motion (RBM), which is then
used to predict the position of a detected lane one frame ahead.

The expected lane is then used for filtering the lane detection
in the following frame by comparing both and rejecting the
detection if it differs too much from the prediction.

F. The Perception-Action Repository

The PAR serves as the system’s memory. It stores its
(driving) experience and retrieves it at a later stage. The idea
is based on the assumption that a human executes a stereotypic
driving behavior according to the street trajectory he or she
sees in front. A straight street ahead will be followed by
straight steering for a while and probably some acceleration,
a sharp turn will cause the driver to decelerate and to steer

Fig. 6: The tracks on which training data was recorded, (a) s03
(1km), (b) s05 (2km), (c) s06 (1km), (d) long tour between
Lippstadt and Beckum (69km).

accordingly, etc. To let the system learn this, we store a
description of the street ahead together with sequences of
human driving data that he or she issued after having observed
that street. This is the training phase. After this follows the
retrieval phase during which the system can use incoming
street trajectory descriptions to query the PAR (similar to a pat-
tern matching process) and obtain adequate driving sequences.
The fact that we use sequences instead of single step actions
allows us in a subsequent step to compute an expected human
driving behavior that reaches to some extent into the future,
i.e. we predict future sequences of human driving actions. To
demonstrate the system’s use for driver assistance we issue
warnings if the actual human driving data differs too much
from the computed expected driving. In the following we
explain what data we use and then formalize the individual
steps.

1) Data, Default Driving and Preprocessing: We use a data
set from a single driver recorded and provided by Hella KGaA
Hueck & Co2. It consists of three repeatedly driven tours to
which we refer as s03, s05 and s06, comp. Fig. 6a-c, and a
track that we denote “long tour”, see Fig. 6d, which was driven
twice.

The data predicted is steering and acceleration from the car
CAN-bus, see Section III-A. Due to trends and a too high
variance found in general in the velocity data we used the
acceleration signal which we found to be better predictable.

The goal is to learn the default human behavior concerning
steering and acceleration for lane following in context-free
situations. By this we mean driving without additional traffic
and without special situations, like intersections, etc. This
requires filtering the original driving data to clean it from
context-afflicted situations, which can be achieved by using the
IMO detector to identify and exclude situations with IMOs in
front as well as by using inconsistencies in the lane detection to
identify and exclude situations like intersections. Hence, PAR
entries for lane following are based on context-free driving
examples.

2Parts of this set are available at the web-page [50].

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 6

In addition to the acquisition of context-free situations we
also remove action sequences that are obvious outliers as
described in the following. In Fig. 7b and c fifteen steering
and acceleration signals from the same track and driver are
shown along with their means plotted in black. We observe a
much higher variance in the acceleration data than for steering
which is quantified by the mean signal to noise ratio, SNR (we
compute E[|µ|σ], with µ being the mean and σ the standard
deviation), where a high SNR indicates good and a low one
bad predictability of a signal. For the shown data we obtain
an SNR value for steering of 7.43 and for acceleration 0.62.
By removing outliers (which are detected by an automatic
procedure during which the individual signals are compared
to the mean) the latter can be increased to 1.3. In Fig. 7d black
signals are those acceleration signals found to be sufficiently
similar and others (differently colored plots) are the ones that
were sorted out. The sequence closest to the mean is plotted
in red. This data is what we use for training the PAR, as will
be explained in Section III-F2.

Driving data assigned to similar situations is averaged dur-
ing training. Similarity is defined by the resemblance between
left and right street lane of the observed image and one
already contained in the PAR as well as a short sequence of
previous steering data. A formal definition is given in Section
III-F3. Hence, for tracks that are being driven multiple times
the system defines the default human driving behavior over
the mean of the action sequences obtained from driving on
the same track as exemplary shown by the black plot in
Fig. 7b. Note, however, learning starts with the first entry
in the PAR and every additional information just improves
the performance of the perception-action mapping. Single-
example performance is reliable for steering, but remains
restricted for acceleration control, see Section V. Note, as
curve shapes are fairly similar, after some learning the system
is able to generalize into unseen curves. This will be shown
later (see Fig. 11).

Since the signals predicted by the PAR should correspond
to the default behavior of the human, i.e., the mean action-
signal, we evaluate the performance of the PAR by comparing
its output against the human action sequence closest to the
mean signal, i.e., the red plot in Fig. 7d, (which we do not
include in the training data.)

2) PAR Training: The information stored as experience
in the PAR is a state vector, s, containing a description
of extracted left and right street lane (vleft, vright) from a
current image frame, It. Here, t denotes the time of the image
observation3. Because we found that only a description of the
street ahead is not sufficient to distinguish different driving
situations from each other, e.g., a straight street can lead
to acceleration or no acceleration depending on the current
velocity, we also store a short sequence of previous steering
(spast). We use a fixed number of m = 50 discrete steering
actions that preceded It. Thus, the state vector is as given in
eq. 1. To each such state vector we assign sequences of future
human driving actions executed after the observation of It,

3Time is measured in discrete time steps according to the camera’s image
capturing frequency.

a b

c d

Fig. 7: (a) The extracted street boundaries described by poly-
lines and the corner points. The vectors of the corner points
(c0l/r , c1l/r

. . .) for left and right lane constitute the visual state
description. (b) Steering and (c) acceleration signals from
fifteen runs from the same track and driver. The mean is
plotted in black. “SNR” refers to signal to noise ratio. (d) The
sequence closest to the mean is shown in red. Black signals
are considered to be sufficiently similar.

which we refer to as sfut and afut. The length of the sequences
stored is supposed to resemble the number of actions necessary
to cover the part of the street observable in It. Since we do
not know exactly how many actions this corresponds to, we
use a fixed value, n = 100, which is 5 seconds of driving
corresponding to 97m at a speed of 70km/h which we consider
reasonable for country road driving. Thus, a PAR entry, e, is
as given in eq. 2.

s = {vleft,vright, spast}, state vector (1)
e = {s, sfut,afut} PAR entry (2)

The action sequences spast/fut and afut

spast = [st−1, st−2, . . . , st−m] (3)
sfut = [st, st+1, . . . , st+n] (4)
afut = [at, at+1, . . . , at+n] (5)

with s and a denoting single steering and acceleration signal
values (actions).

The descriptions of the left and right street lane (vleft/right)
are linear approximations (polylines) of the extracted lanes in
image coordinates, obtained by applying the Douglas-Peucker
method [51]. We store this as vectors containing the corner
points of the polylines as visualized in Fig. 7a, thus:

vright = [c0r , c1r , . . . , clr] (6)
vleft = [c0l

, c1l
, . . . , cll], (7)

with ll and lr denoting the lengths of vleft and vright.
During the training phase a new entry, e (comp. eq. 2), is

added to the PAR if it represents new knowledge, i.e., if no
entries are already available containing similar information.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 7

Precisely an entry is added if: a) there is no other entry
already in the PAR with vleft and vright having the same lengths
as those contained in the probed entry, in other words if a
completely new street trajectory is observed, or b) if there are
such entries, but none of them have a state vector similar to
the one probed for adding. Two state vectors are similar if the
differences between their components are each below a fixed
threshold, i.e., if eq. 8 and 9 are fulfilled:

ε v ≤ thresh v (8)
ε spast ≤ thresh spast (9)

where ε spast is the summed, squared difference between the
entries of spast of two state vectors, and ε v = ε vl + ε vr,
and ε vl/r are the sums of the normalized, weighted and
summed euclidean differences between vleft and vright of two
state vectors, see eq. 10.

ε vl/r =
1
ll/r

ll/r∑
i=0

ω[i]
√

(v[i]left/right − v∗[i]left/right)2, (10)

where the star in v∗[i]left/right indicates that it is an entry of
another state vector, and ω is a weight vector with ω[i] ≥
ω[i+1]. The weighting punishes differences between two lanes
close to the image bottom more than differences appearing
closer to the horizon.

The PAR is complete if a predefined number of entries is
reached, or the two cases in which entries are added to the PAR
as just described do not occur anymore. Note, training is done
off-line (hence, not during driving). This would be desired
also in any commercial system as the training procedure is
demanding (due to the removal of context-dependent scenes)
and should thus take place when the car is not operating.

3) PAR Retrieval: To retrieve information from the PAR it
is queried with a current state vector which is compared to
all PAR entries whose vleft and vright have the same lengths
as those in the queried state vector. The action sequences
attached to the most similar PAR entry are returned. Similarity
is defined by computing the differences between the single
entries of two state vector entries, i.e., ε v, ε spast, as defined
above, and the most similar entry is the one with the lowest
overall differences.

Thus, the return parameters of a query are either: 1) the
differences ε v and ε spast between the most similar PAR entry
and the query, and the action sequences sfut and afut assigned to
the most similar entry, or: 2) an indication that no match could
be retrieved. The latter occurs either when there was no entry
that the query could be compared to, or the best found match
was unacceptably bad, i.e., the assigned differences exceeded
predefined thresholds.

4) Prediction of Action Sequences: Because the PAR is
queried every time step, sequences of driving behavior more
or less appropriate to the queried situation are obtained. The
degree to which the returned actions correspond to the queried
situation is indicated by the returned differences ε v, ε spast.

Since it is unlikely that identical state vectors are obtained
multiple times even on the same track, a mechanism for
generalization is required. That is, the system must compute
adequate driving actions based on the more or less appropriate

Fig. 8: Gray lines are PAR returns for steer and the computed
expected human driving sequence is drawn in black. The gray
rectangle indicates a vector gbuf containing all action signals
of a certain time step used for averaging, see text.

PAR returns. We postpone this step until retrieval time as
typical for lazy-learning algorithms ([32], [52]–[54]) which
are often used in imitation learning (compare [15]). The final
expected human driving sequences are generated by keeping
the latest k query results for steering and acceleration, and
simply averaging over values belonging to the same time
step (gray box in Fig. 8). Assuming that these values are
contained in a buffer gbuf, see Fig. 8, a single predicted action
is computed as given in eq. 11.

at =
1
|gbuf|

|gbuf|−1∑
i=0

gbuf[i]. (11)

Thus, every action command in the resulting prediction is a
linear interpolation between the examples learned before. This
is similar to the k-nearest neighbor algorithm which uses k
closest training examples to compute a value for the variable
of interest. Thus, the learning begins to work already with
one single entry in the PAR and improves on repeatedly seen
tracks just as a human driver would, too. For a final smoothing
we apply a moving average filter (windowsize=10) on the
resulting signal.

We implemented a simple warning mechanism to the system
to demonstrate its use for driver assistance. A warning is
generated if the actual human steering deviates too much from
the expected driving given by the computed prediction and
specified by a threshold determined empirically based on the
off-line analysis of the test-drive sequences.

Fig. 4 exemplary shows the actual driving, the prediction
and the thresholds.

G. Algorithmic Flow

The algorithmic flow of the system concerning action pre-
diction is summarized in Fig. 9.

No output can be generated if lanes could repeatedly not be
detected, or if they were repeatedly mis-detected, i.e., other
items erroneously identified as lane. Some critical cases can
be compensated by other mechanisms, e.g., the generated lane
expectation can be used in case of an undetected lane. If this
prediction is considered unreliable the previous action plan
can be used for as long as it contains entries. In this case the
control is open loop and only single action commands can be

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 8

Fig. 9: Algorithmic flow of the driving system (UML activity
diagram).

issued. In the optimal case the system returns a sequence of
action commands as described in Section III-F4.

IV. RESULTS

The performance of the IMO detection is reported in detail
in [39], thus here we focus on the lane detection and the
learning system.

The developed lane detection algorithm was evaluated on
each tour of the available data set which comprised a variety
of country roads with both clear and damaged lane markers (a
total of 11.400 frames with humanly detectable lane markers
present in 11.055 frames). In 98.9% of the 11.055 frames a
valid lane description was extracted. In 5.6% of these cases
only the left and in 8.5% only the right marker was detected.
Both markers were found in 84.8% of these cases.

To evaluate how well the action predictions match the
human default behavior we use the provided data set.

After filtering it, as explained in Section III-F1, approxi-
mately 80 min. of training data were obtained, resulting in a
PAR with 90,470 entries, adequate for evaluating the system
performance. First, we test the performance on a known track,
i.e., one that the system had seen before. For that we train the
PAR with all runs but the one closest to the mean which we
consider to resemble the human default behavior as explained
in Section III-F1 and which we use for testing. The smoothed
steering and acceleration signals from the algorithm are plotted
against the signal generated by the human for s03, s05, and
s06 in Fig. 10. As an additional measure of similarity we
compute the correlation coefficient of the two signals (human
and prediction). For steering and acceleration prediction we
obtain for s03 0.99 and 0.81, for s05 0.93 and 0.73, and for s06
0.97 and 0.67. Thus, all predictions are very good, however the
steering signal is better approximated than acceleration, which
is as expected from the computed SNR in Section III-F1.

For testing the performance on an unknown track we train
the PAR with all available data except that from the track
we test for. The result is shown in Fig. 11. We chose s05,
which contains a very sharp turn (see Fig. 12) leading to two
typical phenomena discussed below. The resulting steer and
acceleration predictions in comparison to the human signal are

Fig. 10: Results for steering (left column) and acceleration
(right column) prediction for known tracks. “cc” denotes the
correlation coefficient value between the human generated
signal and the synthesized one.

Fig. 11: Results for steering (left) and acceleration (right)
prediction on an unknown track.

a b

Fig. 12: (a) Entering a sharp turn in s05 at t = 200. (b) Too
short detected lanes.

shown in Fig. 11. The steering prediction is very close to the
human signal, but the acceleration is less reliable. In particular
it can be seen from the plotted acceleration prediction in Fig.
11 that the sharp curve (which is entered around time step
200, comp. Fig. 12a, is accompanied by a deceleration in the
human signal (between time step 220 and 380) and that this
is reflected nicely by the algorithm. However, before and after
the deceleration part the predicted signal differs considerably
from the human data.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 9

This phenomenon results from the fact that street parts
with a lower curvature allow a great variance in the driver’s
choice of speed depending on hard-to-access variables in-
cluding “mood” and “intention”, etc. where curves, especially
sharp curves, significantly restrict the driver’s behavior and
thus make it better predictable. We therefore conclude that
acceleration prediction with the presented method is only
useful for curve negotiation. The second observation is that
there are unwanted peaks in the predicted acceleration curve.
This happens because the system sometimes hooks on to
a different, similar looking road segments in the PAR, as
can be seen from Fig. 12b. Although the lanes are correctly
extracted the lookahead is not sufficient to distinguish this
situation properly from almost straight streets. We found that
our driver sometimes reacted to upcoming curves up to 8
seconds before entering them, requiring the system to have
a similar lookahead to correctly predict the driver. Humans
can see this far and make out even very faint features of the
road layout, which leads to such early reactions, computer
vision systems, however, cannot. The detected lanes at such
distances and the detected lane segments will, for smooth and
less descriptive situations, remain ambiguous leading to false
matches which causes these peaks.

According to the algorithmic flow shown in Fig. 9 critical
cases are a frequently undetected street, as well as the case that
the PAR did not contain a good enough match. In these cases
it is possible to work off a previously generated action plan,
but only as long such a plan is available. For the presented
tests the street detection rates were high: for s03 100%, for s05
96%, and for s06 98%. However, the case that no PAR match
was retrieved occurred relatively frequently: for s03 in 32%,
for s05 in 12%, and for s06 in 39% of all cases. For testing the
case of driving on an unknown street on s05 no PAR match
was retrieved in 39%. Despite these high rates it can be seen
from the Figs. 10 and 11, that for the entire duration action
signals were reliably produced. It is an important aspect of the
system that its ability to predict sequences adds considerable
robustness to its performance.

During the final review meeting of the DRIVSCO project
the system was demonstrated successfully observed by three
independent international reviewers, see [55]. The driver from
which the training data was obtained, i.e., who taught the sys-
tem, drove the first 20 minutes of the long tour and back, where
“back” corresponds to an unknown track situation as curves
are reverted. All components were shown to work reliably
together at the desired speed, the lane detection worked even
under challenging weather conditions where sunshine after
rain caused reflections. (A TV report of this is available on-
line [56].)

V. DISCUSSION AND CONCLUSION

We have presented the DRIVSCO system, which learns
basic human driving (steering and acceleration control for
lane following) by observing the driver. We evaluated its
imitation performance on known and unknown tracks and
showed it to work reliably for steering and, in the case of curve
negotiation, also for acceleration prediction. In addition we

have implemented a novel form of data driven IMO detection.
Thus both, the learning algorithm as well as the IMO detection,
do not rely on predefined models which makes the system
widely applicable.

We demonstrated the use of the system output (steering
and IMO detection) for supporting the driver. A domain
in which this system may have future potential, is that of
intelligent driver assistance systems which automatically adapt
to individual driver behavior.

In contrast to most related work, DRIVSCO is an integrated
system implemented on a real car, in real-time, realized
by a multi-threaded, parallel CPU/GPU architecture which
uses data from real driving – not simulation. The learning
algorithm is deliberately simple and thus easy to understand
and implement. In the early stages of the project different
methods based on feed-forward and radial-basis-function net-
works were tested, however not achieving the performance
of the lazy learning approach presented here. Furthermore,
lazy learning offers the advantage that all information remains
human interpretable, which is convenient for error analysis as
opposed to learning algorithms which transform information
into subsymbolic knowledge which is, for example, the case
with neural networks. The system predicts sequences of ex-
pected human behavior as opposed to a moment-to-moment
control. This makes it a) more stable, e.g., in case of unreliable
or lacking sensory input it can use predictions as a fall-back
plan, and b) it allows for proactive control, i.e., warnings can
be issued based on the predicted behavior instead of the current
one.

The system has been specifically designed for motorways
and country roads, hence driving situations with limited con-
text. To apply imitation learning to more difficult driving
situations (e.g., city) appears currently infeasible as driving
decisions are in these cases far too diverse and state-action
descriptions would become too complex. Furthermore, we
observed that acceleration signals are very non-descriptive
when driving in uncritical situations (e.g., straight road) be-
cause drivers follow their mood. This contributes strongly
to the high variance observed in the acceleration data. As a
consequence, longitudinal control (or warning) becomes only
useful whenever a driver is forced to drive with less leeway
(e.g., in front of sharp curves). This notion is important when
considering the psychological acceptance of individualized
driving aids. One of their central features must be to not
unnecessarily interfere with the driver. Hence, in uncritical
situations systems should remain silent and acceleration should
remain in the hands of the driver.

To improve the presented system one should furthermore
consider to extend the system’s lookahead, beyond that of
machine vision. This could be achieved, for example, by
integrating GPS information and digital maps.

One interesting aspect concerning industrial applications is
the potential use of this system for night driving support.
Under bad illumination conditions the human’s sensing pro-
cess is obviously limited, however, by using infrared light the
system’s sensing is less affected, given that the lane detection
process is adequately adapted to the new circumstances. Thus,
the system can use its knowledge about driving acquired

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 10

during the day to support the human in the more difficult
situation of night driving.

REFERENCES

[1] S. Mammar, S. Glaser, and M. Netto, “Time to line crossing for lane
departure avoidance: a theoretical study and an experimental setting,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 7, no. 2,
pp. 226–241, June 2006.

[2] J. McCall and M. Trivedi, “Video-based lane estimation and tracking
for driver assistance: survey, system, and evaluation,” Intelligent Trans-
portation Systems, IEEE Transactions on, vol. 7, no. 1, pp. 20–37, March
2006.

[3] (2008) collected publications of the safelane project. [Online].
Available: http://www.preventip.org/en/public documents/publications/
safelane publications.htm

[4] L. Li, F.-Y. Wang, and Q. Zhou, “Integrated longitudinal and lateral
tire/road friction modeling and monitoring for vehicle motion control,”
vol. 7, no. 1, March 2006, pp. 1–19.

[5] P. Ulleberg and T. Rundmo, Safety Science, vol. 41,
no. 5, pp. 427 – 443, 2003. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6VF9-487KCBW-
4/2/b09939b6c416cac31aa9979e6eb6c60a

[6] F. I. Kandil, A. Rotter, and M. Lappe, “Driving is smoother and more
stable when using the tangent point,” Journal of Vision, vol. 9, pp. 1–11,
2009.

[7] K. A. Brookhuis, D. de Waard, and W. H.Janssen, “Behavioural impacts
of advanced driver assistance systems-an overview,” European Journal
of Transport and Infrastructure Research, vol. 1, no. 3, 2001.

[8] A. Lindgren and F. Chen, “State of the art analysis: An overview of
advanced driver assistance systems (adas) and possible human factors
issues,” in Human Factors and Economic Aspects on Safety. Swedish
Network for Human Factors Conference, 2007.

[9] J. F. Coughlin, B. Reimer, and B. M. (2009)., “Driver wellness, safety
& the development of an awarecar,” AgeLab, MIT, White Paper, 2009.

[10] S. Hoch, M. Schweigert, F. Althoff, and G. Rigoll, “The bmw surf
project: A contribution to the research on cognitive vehicles,” in Pro-
ceedings of the 2007 Intelligent Vehicles Symposium, 2007.

[11] E. D. Dickmanns and V. Graefe, “Dynamic monocular machine vision,”
Machine Vision and Applications, vol. 1, pp. 223–240, 1988.

[12] M. A. Turk, D. G. Morgenthaler, K. D. Gremban, and M. Marra, “Vits-
a vision system for autonomous land vehicle navigation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 10, no. 3, pp. 342–361, 1988.

[13] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L. E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The robot that
won the darpa grand challenge:,” J. Robot. Syst., vol. 23, no. 9, pp.
661–692, 2006. [Online]. Available: http://dx.doi.org/10.1002/rob.v23:9

[14] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, J. Dolan, D. Dug-
gins, D. Ferguson, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. Howard, A. Kelly, D. Kohanbash, M. Likhachev, N. Miller,
K. Peterson, R. Rajkumar, P. Rybski, B. Salesky, S. Scherer, Y. Woo-
Seo, R. Simmons, S. Singh, J. Snider, A. Stentz, W. . Whittaker, and
J. Ziglar, “Tartan racing: A multi-modal approach to the darpa urban
challenge,” Darpa Technical Report, 2007.

[15] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[16] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in Neural Information Processing Systems 1.
Morgan Kaufmann, 1989.

[17] ——, “Neural network based autonomous navigation,” in NAVLAB90,
1990, pp. 558–614.

[18] ——, “Efficient training of artificial neural networks for autonomous
navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97, 1991.

[19] D. A. Pomerleau, “Neural network vision for robot driving,” in The
Handbook of Brain Theory and Neural Networks. M. Arbib, 1999.

[20] M. Pasquier and R. J. Oentaryo, “Learning to drive the human way:
a step towards intelligent vehicle,” International Journal of Vehicle
Autonomous Systems, vol. 6, pp. 24–47(24), December 2007. [Online].
Available: http://dx.doi.org/10.1504/IJVAS.2008.016477

[21] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,” in
ML, 1992, pp. 385–393.

[22] A. Y. Ng and S. Russel, “Algorithms for inverse reinforcement learning,”
in Proc. ICML, 2000.

[23] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in In Proceedings of the Twenty-first International
Conference on Machine Learning. ACM Press, 2004.

[24] (2010) Official diplecs website. [Online]. Available:
http://www.diplecs.eu/

[25] C. H. Hwang, N. Massey, B. W. Miller, and K. Torkkola, “Hybrid
intelligence for driver assistance,” in FLAIRS, 2003.

[26] R. Freymann, Motion and Vibration Control. Springer Netherlands,
2008, ch. Driver Assistance Technology to Enhance Traffic Safety, pp.
71–81.

[27] K. Brookhuis and D. de Waard, “Limiting speed, towards an intelligent
speed adapter (isa),,” Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 2, pp. 81–90, 1999.

[28] A. Tahirovic, S. Konjicija, Z. Avdagic, G. Meier, and C. Wurmthaler,
“Longitudinal vehicle guidance using neural networks,” in Computa-
tional Intelligence in Robotics and Automation, 2005. CIRA 2005., 2005.

[29] D. Partouche, M. Pasquier, and A. Spalanzani, “Intelligent speed adap-
tation using a self-organizing neuro-fuzzy controller,” in Proc. IEEE
Intelligent Vehicles Symposium, 2007, pp. 846–851.

[30] H. Kwasnicka and M. Dudala, “Neuro-fuzzy driver learning from real
driving observations,” in Proceedings of the Artificial Intelligence in
Control and Managamnent, 2002.

[31] I. Markelic, T. Kulvicius, M. Tamosiunaite, and F. Wörgötter, “Antici-
patory driving for a robot-car based on supervised learning,” in ABiALS,
2008, pp. 267–282.

[32] D. W. Aha, Ed., Lazy Learning, ser. Artificial Intelligence Review.
Kluwer Academic Publishers, 1997, vol. 11, ch. Editorial, pp. 7–10.

[33] J. Daugman, “Uncertainty relation for resolution in space, spatial-
frequency, and orientation optimized by two-dimensional visual cortical
filters,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol. 2, no. 7, pp. 1160–
1169, 1985.

[34] K. Pauwels and M. Van Hulle, “Realtime phase-based optical flow on the
GPU,” in IEEE Conference on Computer Vision and Pattern Recognition,
Workshop on Computer Vision on the GPU, 2008.

[35] T. Gautama and M. Van Hulle, “A phase-based approach to the estima-
tion of the optical flow field using spatial filtering,” IEEE Transactions
on Neural Networks, vol. 13, no. 5, pp. 1127–1136, 2002.

[36] S. Sabatini, G. Gastaldi, F. Solari, J. Diaz, E. Ros, K. Pauwels,
M. Van Hulle, N. Pugeault, and N. Krüger, “Compact and accurate early
vision processing in the harmonic space,” in International Conference
on Computer Vision Theory and Applications, Barcelona, 2007, pp. 213–
220.

[37] B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool, “Coupled object
detection and tracking from static cameras and moving vehicles,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10, pp. 1683–1698, 2008.

[38] B. Leibe, N. Cornelis, K. Cornelis, and L. Van Gool, “Dynamic 3d
scene analysis from a moving vehicle,” in IEEE Conference on Computer
Vision and Pattern Recognition, Minneapolis, 2007, pp. 1423–30.

[39] K. Pauwels, N. Krueger, M. Lappe, F. Woergoetter, and M. van Hulle,
“A cortical architecture on parallel hardware for motion processing in
real-time,” Journal of Vision, submitted.

[40] T. Zhang and C. Tomasi, “On the consistency of instantaneous rigid
motion estimation,” International Journal of Computer Vision, vol. 46,
pp. 51–79, 2002.

[41] F. Mosteller and J. Tukey, Data Analysis and Regression: A Second
Course in Statistics. Mass.: Addison-Wesley Reading, 1977.

[42] W. Thompson and T. Pong, “Detecting moving-objects,” International
Journal of Computer Vision, vol. 4, pp. 39–57, 1990.

[43] M. Bertozzi and A. Broggi, “Real-time lane and obstacle detection on
the system,” in IEEE Intelligent Vehicles, 1996, 1996, pp. 213–218.

[44] E. Dickmanns, Dynamic Vision for Perception and Control of Motion.
Springer, 2007.

[45] M. Aly, “Real time detection of lane markers in urban streets,” in Proc.
IEEE Intelligent Vehicles Symposium, 4–6 June 2008, pp. 7–12.

[46] J. F. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 8, pp. 679–698, 1986.

[47] I. Sobel and G. Feldman, A 3x3 Isotropic Gradient Operator for Image
Processing. Wiley, 1973.

[48] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transaction of the ASMEJournal of Basic Engineering, pp.
33–45, 1960.

[49] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 11

[50] (2010) Eisat website. [Online]. Available:
http://www.mi.auckland.ac.nz/EISATS

[51] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, pp. 112–122, 1973.

[52] L. Bottou and V. Vapnik, “Local learning algorithms,” Neural Compu-
tation, vol. 4, pp. 888–900, 1992.

[53] J. C. Santamaria, R. S. Sutton, and A. Ram, “Experiments with rein-
forcement learning in problems with continuous state and action spaces,”
Adaptive Behavior, vol. 6, pp. 163–217, 1997.

[54] W. D. Smart and L. P. Kaelbling, “Practical reinforcement learning
in continuous spaces,” in Proceedings of the Seventeenth International
Conference on Machine Learning, 2000.

[55] “Future and emerging technologies (fet), newsletter,” January 2010. [On-
line]. Available: ftp:ftp.cordis.europa.eupubfp7ictdocsfetfetnl06 en.pdf

[56] (2009) Tv report about the drivsco system (in german). [Online]. Avail-
able: http://www1.ndr.de/mediathek/index.html?media=ndsmag2340

Irene Markelić Irene Markelić is a doctoral student
at the University of Göttingen in Germany. She
received her B.Sc. and M.Sc. degree in computer
science at the University of Koblenz-Landau in 2002
and 2005. Her research interests include vision based
robotics and cognitive skill learning.

Anders Kjær-Nielsen received his B.Sc. and M.Sc.
degree in Computer Systems Engineering from the
University of Southern Denmark, Denmark, in 2004
and 2007 respectively. He is currently a PhD student
at the Mærsk McKinney Møller Institute, University
of Southern Denmark. His research interests include
real-time processing, computer vision, embedded
systems and FPGAs.

Karl Pauwels received the M.Sc. degree in Com-
mercial Engineering, the M.Sc. degree in Artificial
Intelligence, and the Ph.D. degree in Medical Sci-
ences from the Katholieke Universiteit Leuven, Bel-
gium. He is currently a postdoc at the Laboratorium
voor Neuro- en Psychofysiologie, Medical School,
K.U.Leuven. His research interests include dense
optical flow, stereo and camera motion estimation,
video stabilization, and real-time computer vision.

Lars Baunegaard With Jensen received his B.Sc.
and M.Sc. degree in Computer Systems Engineering
from the University of Southern Denmark, Denmark,
in 2004 and 2007 respectively. He is currently a PhD
student at the Mærsk McKinney Møller Institute,
University of Southern Denmark. His research in-
terests include real-time computer vision and GPU
computing.

Nikolay Chumerin received the M.Sc. in Mathe-
matics and Educational Science and Higher Edu-
cational Certificate of teacher in Mathematics and
Computer Science from the Brest State University,
Belarus in 1999. He is currently a PhD student at
the Laboratorium voor Neuro- en Psychofysiologie,
Medical School, K.U.Leuven. His research interests
include biologically-inspired computer vision, ma-
chine learning and brain-computer interfacing (BCI).

Aušra Vidugiriene Aušra Vidugirien, received her
B.Sc. and M.Sc. degree in computer science at
Vytautas Magnus University (Kaunas) in Lithuania
in 2003 and 2005 respectively, on language tech-
nologies. She is a doctoral student at Vytautas Mag-
nus University (Kaunas) in Lithuania. Her research
interests include signal processing and analysis of
driver’s bahavior.

Minija Tamosiunaite Minija Tamosiunaite has re-
ceived her Engineer Diploma from Kaunas Univer-
sity of Technology, Lithuania, in 1991 and Ph.D.
from Vytautas Magnus University, Lithuania, in
1997. Her research interests include machine learn-
ing and applications in robotics.

Alexander Rotter Alexander Rotter received his
Diploma degree in electrical engineering and the
Diploma degree in industrial engineering from Fach-
hochschule Sdwestfalen, Iserlohn, Germany in 2002
and 2007, respectively. He is currently working at
Hella KGaA Hueck & Co. at the Advanced Devel-
opment department. His research interests are vision
based driver assistance systems, including object-
and lane-detection, and emergency braking systems
in combination with distance measurement sensors.
Furthermore vision based driver assistance systems,

object detection, and emergency braking systems in combination with distance
measurement sensors.

Marc Van Hulle Prof. Dr. Marc Van Hulle is a Full
Professor at the K.U.Leuven, Medical School, where
he heads the Computational Neuroscience group of
the Laboratorium voor Neuro- en Psychofysiologie.
Marc Van Hulle received a M.Sc. degree in Elec-
trotechnical Engineering (Electronics) and a Ph.D.
in Applied Sciences from the K.U.Leuven, Leuven
(Belgium). In 1992, he has been with the Brain and
Cognitive Sciences department of the Massachusetts
Institute of Technology (MIT), Boston (USA), as
a postdoctoral scientist. In 2003, he received from

Queen Margrethe II of Denmark the Doctor Technices degree, and in 2009 a
Honory Doctoral degree from the Brest State University.

His research interests include computational neuroscience, neural networks,
computer vision, data mining and signal processing.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, JANUARY ? 12

Norbert Krüger is a Professor at the Mærsk McK-
inney Møller Institute, University of Southern Den-
mark. He holds a M.Sc. from the Ruhr-Universität
Bochum, Germany and his Ph.D. from the Univer-
sity of Bielefeld. He is a partner in several EU
and national projects: PACO-PLUS, Drivsco, NISA,
Handyman.

Norbert Krüger is leading the Cognitive Vision
Lab which is focussing on computer vision and
cognitive systems, in particular the learning of object
representations in the context of grasping. He has

also been working in the areas of computational neuroscience and machine
learning.

Florentin Wörgötter Florentin Wörgötter has stud-
ied Biology and Mathematics in Düsseldorf. He
received his PhD in 1988 in Essen working exper-
imentally on the visual cortex before he turned to
computational issues at the Caltech, USA (1988-
1990). After 1990 he was researcher at the Univer-
sity of Bochum concerned with experimental and
computational neuroscience of the visual system.
Between 2000 and 2005 he had been Professor
for Computational Neuroscience at the Psychology
Department of the University of Stirling, Scotland

where his interests strongly turned towards ”Learning in Neurons”. Since
July 2005 he leads the Department for Computational Neuroscience at the
Bernstein Center at the University of Göttingen. His main research interest
is information processing in closed-loop perception-action systems, which
includes aspects of sensory processing, motor control and learning/plasticity.
These approaches are tested in walking as well as driving robotic implementa-
tions. His group has developed the RunBot a fast and adaptive biped walking
robot.

