
Anticipatory Driving for a Robot-Car Based on
Supervised Learning

Irene Markelić1, Tomas Kulviĉius1, Minija Tamoŝiunaite2, and Florentin
Wörgötter1

1 Bernstein Center for Computational Neuroscience, University of Göttingen,
Bunsenstrasse. 10, 37073 Göttingen, Germany
{irene,tomas,worgott}@bccn-goettingen.de

http://www.bccn-goettingen.de
2 Vytautas Magnus University, Kaunas, Lithuania

{m.tamosiunaite}@if.vdu.lt

http://www.vdu.lt

Abstract. Prediction and Planning are essential elements of success-
ful human driving, making them equally important for autonomously
driving systems. Many approaches achieve planning based on built-in
world-knowledge. However, we show how a learning-based system can
be extended to planning, needing little a priori knowledge. A car-like
robot is trained by a human driver by constructing a database, where
look ahead sensory information is stored together with action sequences.
From that we achieve a novel form of velocity control, based only on
information in image coordinates. For steering we employ a two-level
approach in which database information is combined with an additional
reactive controller. The result is a trajectory planning robot running at
real-time, issuing steering and velocity control commands in a human
manner.

Key words: anticipatory behavior, example based learning, robot car
driving, longitudinal control, lateral control, learning from experience

1 Introduction

Automated system control is important in industry and has many applications
for everyday life. For example, autonomously driving cars have the potential to
increase safety and reduce costs. In driving, planning plays an important role.
Look ahead information helps us decide which actions to take in response to
upcoming events. We can either act immediately or prepare ahead of time for
taking certain actions, thus reducing reaction time. For this reason we propose
that an autonomously driving car should also be equipped with such capabilities
as using look ahead and plan making, which is what we call anticipatory driving.
The advantages are that it can a) react to upcoming events, b) cope with short
lacks of sensory information, and c) use these plans for making predictions about
its own state, which is useful for higher-level planning. For a more thorough list
of the advantages of action sequence generation in general, see [1].

2 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

In this paper we focus on the task of lane following, which is a basic skill
in autonomous driving. Lane following is a visuomotor skill, i.e. one in which
visual sensory input must be transferred into appropriate motor output. Many
approaches rely on predefined control laws which require a map of the environ-
ment in Cartesian coordinates, the known state of the plant, and possibly the
known states of other entities, e.g. other cars. Thus, the work consists of a)
identifying the necessary control law(s), b) identifying the model for the plant
as well as other desired object models, and c) transforming the (relevant) visual
input into the required map. In this type of approach most knowledge, such as
what is expected to be sensed (object models), how it is sensed (sensor mod-
els), and how to act upon it (control laws), is built int the system a priori.
Examples of approaches matching this description to a great extent are [2–5].
We refer to them as ”model-based”. They have the property that forward sim-
ulations of the system are possible by using the state estimation process and
the control law(s). This can be used for planning algorithms like path planning.
Despite many advantages, the massive dependency on built-in world-knowledge
presents a bottleneck. Everything that a system might need to act upon cannot
be predefined.

As alternatives, machine learning based approaches to lane following can be
implemented. A prominent example is ALVINN [6–9], where actions of a human
driver were associated with concurrent visual input from a camera via a neural
network. The inputs to the network were the pixel values of the (downscaled)
camera image and the output was an appropriate steering angle. Velocity con-
trol was handled by a human. Two important points to note are: 1) the system
learned to take the correct actions not by explicit control laws and state estima-
tors, but instead based only on the provided examples, and 2) no transformation
of the visual input into another representation was required, thus no conventional
image processing (e.g. feature extraction, or reconstruction of 3d-information)
was necessary since the visual input was directly mapped to a motor command.
Further examples of machine learning based approaches are: [10] using reinforce-
ment learning, and [11] using genetic algorithms. We refer to these approaches
as ”learning-based”. A shortcoming of these systems is the lack of an explicit
mechanism for planning, making them dependent on continuous sensor input.

Our goal is to utilize the most advantageous quality of the learning-based ap-
proaches, i.e. not having to rely on built-in knowledge, and to extend the method
with an explicit planning component. Path planning in model-based approaches
can be achieved by using the Cartesian map of the environment, a model of the
system to be controlled, and a control law. How can one plan a path if all these
items are not available? We solve this problem by equipping our system with
very simple mechanisms, that are thought to play a role in human learning, too.
Precisely, we give it the ability to make associations and to store and retrieve
data (memory). First, a reactive controller is obtained from human control data,
by associating visual information concerning the nearby street trajectory with
a steering command. Second, a planner learns to associate visual information
about the entire observable street trajectory with action sequences. We show

Anticipatory Driving for a Robot-Car Based on Supervised Learning 3

how this leads to robust lateral and longitudinal control of the robot, and how it
also works in open-loop situations, i.e. when no sensory input is available. Our
goal is not to compete with current state-of-the-art autonomous driving systems,
which are quite advanced and also generally make use of many additional sensors
besides visual ones, instead, we intend to present an alternative to many current
approaches relying on task-specific knowledge.

As described our system is capable of generating speed control as well. This
concept has been much less investigated than steering, at least for approaches
that do not make use of environmental maps, for which a sensor model is nec-
essary. Simpler controls also exists, such as Adaptive Cruise Control (ACC)
systems, which use radar or laser to slow down the vehicle when detecting an
obstacle in front, or Intelligent Speed Adapters and Limiters, ISAs and ISLs
[12], which adjust, or limit, a vehicle’s speed according to the given mandatory
limits. Other approaches determine speed, with the help of a leading vehicle [13].
More related to this work are [14] and [15], which employ fuzzy neural networks
trained on human control data to anticipate curves and regulate speed accord-
ingly. In contrast to our approach, that work was done using simulations, and
single actions per timestep were generated instead of action plans.

The structure of the paper is as follows: In the Experimental Setup section
we describe the means for realizing this approach. In the Methods section we
explain planner, reactive controller, and their combination, followed by their
evaluation in the Results section. In the Discussion section we discuss our work
and shortly compare it to predictive control based on Kalman filtering [16].

2 Experimental Setup

Experiments are carried out in an indoor environment on a four-wheeled robot
(a modified VolksBot [17] of 50 cm x 60 cm size) with two motors, one for
driving the wheels on each side (differential steering). The robot is equipped
with a monochrome firewire camera operating at approx. 20 Hz, see. Fig. 1A. The
laboratory setup simulates a street environment, where the driver can control
the robot from a special station, see Fig. 1B. Here, one can see ”through the
robot’s eyes” by means of a TV on which we display the camera output. The
driver can manipulate the robot’s actuators using a steering wheel and pedal
set where the communication between human control output and robot sensory
input is realized via a peer-to-peer architecture. A laptop placed on the robot, is
connected to the camera and motors. In a cyclical fashion the robot acquires a
camera image, sends it to the TV, and waits for a control input from the desktop
computer connected to the steering wheel and pedal set. The control, or action
input, is a steer and a velocity command, for which we use the following notation:
ast denotes the steer signal, and av velocity. Both signals take numerical values
with ast ∈ [−128, 128] related to the steering angle and av ∈ [−512, 512] related
to the voltage sent to each motor. Throughout this text, we skip the superscripts
st or v, when referring to both action signals. They are generated by the human
and sent to the robot-laptop via the desktop computer, which in turn passes

4 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

them to the motors of the robot, (see Fig. 1C). Thus, every communication cycle
defines a discrete timestep t where every incoming image frame It is related to
the corresponding control avt , and astt . In Fig. 1D, we show a sketch of the track
on which we trained the robot.

Fig. 1. A: A car-like robot. B: Control station. C: Information flow in the experimental
setup: cam denotes camera, and ML and MR left and right motor, the shaded area
indicates the robot. D: Sketch of the track used for training the robot. E: Short and
long term visual information. x and α define short term information for the reactive
controller and s0, s1, s2, the corner points of the polygonized lane boundary, define the
long term information for the planner.

During the supervised learning the robot associates visual information with
human actions. This visual information is derived from the right street lane
boundary that we detect in each image in real-time. We developed a simple and
fast algorithm based on conventional edge detection (Canny [18]) which returns
the detected boundary as an ordered 2d-curve.

3 Methods

Regulation of steering and speed are necessary for vehicle control. Steering con-
trol is considered to be a two-level process [19] using short-term and look ahead
information, whereas we assume speed control to be based only on look ahead
information. We use the word ”short-term” to denote relevant visual informa-
tion that is temporally and spatially close to the vehicle and ”look ahead” to
denote visual information that is relevant in the future, i.e. further away from
the vehicle. As explained we use two modules, a reactive controller (RC) and
a planner, where the former maps short-term information to a single steering
control value, and the latter is in charge of processing look ahead information
and generating action plans, i.e. sequences for steering and speed control. The

Anticipatory Driving for a Robot-Car Based on Supervised Learning 5

final steering command is a combination of planner and RC output. This setup
is visualized in Fig. 2. In the following we describe both modules starting with
the reactive controller.

Fig. 2. The system setup. It denotes the image frame at time t and Seq a sequence of
actions.

3.1 The Reactive Controller

The purpose of the reactive controller is two-fold. It is supposed to correct the
planner if necessary, and it is used in the case that no sufficiently well suited
plan is contained in the database. It is also learned from human actions and
designed as follows: We define the immediate future (short-term information) of
the robot-car by the tangent constructed from the beginning of the extracted
street boundary and describe it by the angle α between tangent and horizontal
border of the image and its starting position x on the x-axis at the bottom line
of the image, see Fig. 1E. To acquire the supervisor’s policy with respect to
these parameters we assign human actions (from the training set) to the state
space (see 3A). To fill the empty spaces, generalizing to unknown situations, we
use k-nearest neighbor, shown in 3B. Of course, other approximation methods
can be used instead. Note that this simple approach results in an extremely fast
controller, only requiring the time necessary for looking up a steering signal in
a matrix.

Fig. 3. A: The acquired policy from the supervisor. B: The interpolated policy using
k-nearest neighbour. Different gray values denote different steering angles.

6 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

3.2 Planner

We follow the idea that a system should be able to associate experienced action
sequences with visually perceived situations. When exposed to similar situations
it should remember the previously conducted action maneuver. For example, if
the system observes a right turn, it should remember that in the past it always
conducted a similar sequence of actions after it had seen the right turn. Thus,
right turns should be directly associated with right turns in the action space.
Even if this associated action plan is not completely exact, for example the steer-
ing amplitude would not be exactly correct for taking the turn, it still provides
guidance in the desired direction. We realized this idea by building a database,
wherein the system stores triples containing a perceived situation description
along with the corresponding sequence of steering and velocity actions. When
driving in autonomous mode, the system queries the database with the currently
perceived situation and receives (remembers) the assigned action plans. Based
on these retrieved plans, it computes current and, if necessary, future actions.
Thus, the following steps are necessary: a) database construction, b) database
query at runtime, and c) control sequence calculation at retrieval time.

a) For the database construction a visual state or situation description, s, is
needed, comprising look ahead information. For that purpose we use a polygo-
nized approximation of the right street lane, such that s = [s0, s1, ..sl], where si,
with 0 ≤ i ≤ l, are the corner points of the polygon. The polygonization is done
using the Douglas-Peucker method [20]. Note that the vertices of the vector s
are ordered, i.e. s0 is the first vertex at the bottom of the image and sl describes
the last vertex on the 2d-curve. The vector length l can vary. An example is
shown in Fig. 1E and 4. It is a rough description of the observed street which
contains look ahead information, but not explicitly extracted information like
curvature or path length.

To each st corresponding control sequences are assigned. Control sequences
are ordered series of actions, Seqsteer = [astt , a

st
t+1, ..a

st
t+n], and Seqspeed = [avt ,

avt+1, .. a
v
t+n]. The length n of a given sequence is supposed to resemble the

number of actions that are executed while following the observed trajectory at
a given timestep. That is, if only a short stretch of the street is visible we only
assign a short action sequence to it and vice versa. Since we do not know exactly
how many actions correspond to the observed street we use the experimentally
determined value:

n = b1
8

l∑
i=1

|si−1 − si|c. (1)

A triple (st, Seqsteer, Seqspeed) is stored in the database, unless a similar entry
is already available, (i.e. ε ≤ 10, see below and equation 2). The database is
complete if a predefined number of entries is reached, or no more triples are
added by the routine. We denote the total amount of database entries as K.
Thus, Seqksteer, with 1 ≤ k ≤ K is the steering sequence of the k′th database
entry. If we are referring to Seqsteer and Seqspeed interchangeably we skip the
subscripts.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 7

b) For the retrieval step, we need a metric to determine the difference ε
between the extracted vectors, s, which describe the street ahead. We use a
weighted euclidean distance between vectors of same length l, normalized by l.
The weighting enforces similar curves to be those that are especially similar in
the beginning, which is the part of the street that is closest to the robot:

ε =
1
l

l∑
i=0

ωi

√
(sqi − sdbi)

2
, (2)

where sqi denotes the i’th element of the queried vector and sdbi the i’th element
of a vector in the database, ω is a vector containing weights where ωi+1 < ωi

(we used 20, 10, 5, 5 for the first four ω entries and 1 for all remaining ones).
Equipped with such a database, the robot can use its current visual input for

Fig. 4. Screenshot example of the planner operating mode. Left: The observed street
(gray, originally red) is compared to the database entries and the best match is returned
(black, originally blue). Right: The assigned steering sequence of the best match.

making queries. The return values are: 1) the difference ε to the best found match
and 2) Seqsteer and Seqspeed that were assigned to it.

c) The action sequences from the database retrieval contain valuable infor-
mation, not only for the current timestep t but also for t + 1, t + 2, ..., t + n.
However, the database output as such only corresponds to the observed street to
a certain degree. How can we drive on unknown streets? Even on the same track
it is unlikely that identical images are retrieved multiple times. In other words,
how can we generalize using the database output? Here, we postpone this gen-
eralization step until retrieval time which is typical for lazy-learning algorithms
([21–24]).

In principle there are two different ways in which the action sequences ob-
tained from the database query can be used:
1) an action plan can be computed based on single retrieved sequences, or
2) based on all (or the latest N) retrieved sequences.
For the former we propose a method that we refer to as DIFF, because it is
based on a difference equation, and for the latter a method that we refer to as
AVG, because it is based on simple averaging. We will find that both methods
yield comparable results, and because AVG is much simpler to implement we
will only use this method later. Even so, we believe that chaining single action

8 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

sequences together is an important concept that should be considered as well.
For this reason we include a description of the DIFF method.

Fig. 5. A) and B) visualize schematically the data DIFF (A) and AVG (B) operate
on. A) The solid gray lines denote parts of single retrieved action sequences that are
used until a better match is found, which is indicated by the vertical slashed lines.
As can be seen, there is no smooth transition from one retrieved action sequence to
the next. The proposed difference equation smoothly joins two sequences together by
taking into account future values from the previous sequence, which are depicted by
the gray slashed line segments. In the equation we refer to these as ã. As an example,
we took t = 10 as the current timestep. Thus, ãt+i denotes the action value from the
previous sequence i timesteps ahead. The resulting action plan is drawn as the thicker
black line denoting the function a(t). B) The AVG method uses values from the last
N retrieved action sequences, which must be held in a buffer and which are drawn as
thin gray lines. The new action sequence is computed by simply taking the average
from the action values in the buffer at each timestep, indicated the drawn rectangle,
which denotes the vector v (see text). C) and D) show real data examples for DIFF
(C) and AVG (D). Again, the thin gray lines denote retrieved sequences and the thick
black line denotes the new sequence returned by each method.

As explained the DIFF method computes an action plan based on single
action sequences obtained from database queries. At every timestep a database
query is conducted and the returned sequence is compared to the one obtained
in a previous timestep. If it is better, i.e. the affiliated error ε, which is returned
together with the sequence by the database, is smaller than the error affiliated
with the previous sequence, then the new result is kept and the old sequence
is discarded and vice versa. (To acknowledge that a good match found a few
timesteps ago, is less well suited at the current moment, we discount previous
sequences by adding a discount factor, λ = 5, to their affiliated error.) The

Anticipatory Driving for a Robot-Car Based on Supervised Learning 9

concept is visualized in 5A, where the gray line segments denote current action
sequences. It can be seen that whenever a better match is found, there is a gap
between two consecutive signals, indicated by the vertical, dashed lines in the
figure. The purpose of the DIFF method is to create a smooth transition between
two such signals by taking the future values (the dashed gray line segments in
the figure) of the previous signal into account. The action plan is given by at as
shown in 3 and 4.

at+1 = at +∆at (3)

∆at =
n−1∑
i=0

αi
ãt+iτ − at

(1 + at
amax

)G
, (4)

where at is representing a steering or velocity command, i.e. either astt or avt , and
n is the length of the sequence currently being used. We denote action values
from sequences from the database retrieval at the current timestep with ãt, see
Fig. 5A. Thus, future values, i.e. those values in the sequence at t+1, t+2, t+ ..,
t + n are given by ãt+i. The variable τ is a constant determining the sampling
frequency on the current sequence. It influences how fast to move from one signal
to another. If a low value is chosen, the resulting control sequence lingers longer
in the vicinity of the previous segment before reaching the values of the new
segment and vice versa. From the training data we know that the human used
steering and speed commands that did not exceed a certain amplitude. These
upper and lower limits, which we denote with amax should not be exceeded by
the system either. Hence, the denominator decelerates the growth of the action
plan function if the previous action was already close to these known limits. It is

determined by the constant G, which we set to 10, and αi = e
−i2

σ2 a decay term,
which discounts the influence of future values given by ã. The σ is a constant,
which we set to 4. In Fig. 5A the action plan at is drawn in black. In 5C the
result of the difference equation is shown for real data.

We now turn to the second method, AVG, which also makes a query every
timestep, but in contrast to DIFF keeps the returned sequence of each retrieval
in a buffer. To determine an action value at a given timestep, we simply compute
the average on the action values from the latest N retrievals, which are contained
in a vector v as shown in the figure. The value N is usually also the number of
values that the average is computed from. Thus:

at =
1
|v|

|v|−1∑
i=0

vi. (5)

An example for this method is shown in Fig. 5B, and a result computed on real
data in Fig. 5D.

3.3 Combination of Planner and Reactive Controller

The next step is the combination of RC and planner. The RC should correct
the planner in critical, i.e. unfamiliar situations. Therefore, a measure is needed

10 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

that informs about this state. We find that an appropriate measure is the error ε
returned from the database query. If no sufficiently good match to the currently
observed image is contained in the database the system performance decreases
and this correlates with the value of ε.

We can now combine RC and planner as a function of ε, f(ε) → ωc with
0 ≤ ωc ≤ 1. The smaller ε the more we want to rely on the planner, the larger ε
the more we consider RC output:

steer = ωc ∗RC + (1− ωc) ∗ planner, (6)

with f(ε) = ea, and a =
(ε− εtolerable)

150
, (7)

where we set εtolerable to 700.

4 Results

To test the algorithms DIFF, AVG and RC, training and test data is produced
from eight laps of human driving on the described track in the lab (always in
the same direction). The database is constructed from five of these laps and the
remaining data is used as test set. First we consider the performance of a single
action generation for the current timestep, i.e. at. For velocity prediction with
AVG we found best results when averaging over the last N = 20 buffer entries
and for steering the last N = 10. The result is shown in Fig. 6A-E. It can be
seen that all three methods capture the human behavior, where AVG and DIFF
give smooth output and RC is comparably jerky.

We further compare the methods by plotting the root of the summed squared
error between algorithmic output and human signal,
(error =

√
(algorithmout − humanout)2). This error and confidence interval

(95%) are plotted in Fig. 7A for steer and 7B for speed. It can be seen that
there is little difference between AVG and DIFF. The higher error for RC com-
pared to AVG and DIFF can be explained by its jerkiness. It is also observable
that the error for speed prediction on average is higher than for steer. This is un-
derstandable because there is more variance in the human velocity data than in
the steering data. Consider for example the velocity plot in Fig. 6B or C between
timesteps 300 and 500 on the x-axis. The depicted speed signal in this intervall
can be considered to be constant, however, the small deviations between human
and synthesized signal accrue to a relatively large error.

As this is a quantitative comparison, it is necessarily offline, and does not
prove that the system behavior would also be acceptable if the controllers were
used inside the closed-loop setup, i.e. when the generated action of the controller
affects its future sensory input. Therefore, we let the robot run on the track in
autonomous mode. We find that with all three controllers it can follow the road
well, i.e. it stays on the track. The jerkiness of the RC output also results in a
jerky lateral behavior. However, due to the inertia of the robot it is less strongly
visible than what could be expected from the plotted signal.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 11

Next we test wether or not the combination of planner and RC indeed im-
proves the system performance as supposed. In case of an unfamiliar street envi-
ronment that is not represented in the database, the robot should still be able to
issue appropriate steering signals, albeit, without the ability to plan ahead. We
trained the robot in one direction, and since our setup track is circular the robot
is almost exclusively exposed to turns in the same direction, in this case to the
right, thus, when turned around it is facing turns to the left, which are not part
of its database. For a first evaluation we let the human drive the unknown track
and at the same time record the suggested steering actions of RC, planner, and
the combined signal. One would expect the latter to capture the human signal
better than RC or planner output alone. We show an excerpt of the steering
signal of this drive in Fig. 8, where at around timestep 100 on the x-axis this
behavior can be well observed. The negative human steering value indicates a
steep (left) curve, which is not well known by the robot. The amplitude of the
signal is important as it describes how much is turned. Over- or understeering
without correction leads the robot off the track. It can be seen that the sug-
gested signals from the planner indicate less left steering, since it does not know
what to do in this situation. The RC signal captures the amplitude of the human
steering signal better. In this unfamiliar situation the combined output is more
determined by the RC signal, therefore it also captures the human behavior bet-
ter - however, it is also jerkier. In less critical situations the combined signal is
smooth, since it is more determined by the planner.

As a second evaluation we let the robot drive on the unknown track using
a) only the planner, b) only RC, and c) the combined signals. With the planner
it drives smoothly but looses the track in difficult (high curvature) turns due to
the explained reason that this situation is not represented in its database. Using
RC it is able to stay on track as expected, however, the behavior is less smooth.
Finally, when using the combination it drives smoothly on the known parts,
which constitutes the majority of the encountered situations, and in addition
it manages to stay on the track even during the described difficult turns. To
evaluate the performance of the system concerning sequence prediction, which
is our main interest, we do not consider the DIFF method but only AVG, since
DIFF is more complicated with more parameters to tune than AVG, yet fails to
lead to significantly better results in generating single actions as shown above.
Again we test quantitatively and qualitatively.

For the quantitative evaluation we apply AVG on the test set to generate
an action a few timesteps (t = 0, 10, 20, 30) ahead, which we then compare to
the signal elicited by the human at that timestep. We sum the difference over
the entire test set and plot it in Fig. 7D. We also included RC3 in this plot,
mainly for comparison. This result is shown in Fig. 7C. It can be seen that RC’s
predictive capacity is very poor - as expected, and that AVG’s predictive capacity
is high in comparison, but the error increases with the number of timesteps to

3 Since the RC cannot predict sequences we had to ”trick” here. To predict the action
for t = 10, we constructed the RC by mapping (αt, xt) 7→ at+10. We proceeded
analogously for t = 20 and t = 30.

12 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

Fig. 6. A and B: Performance of AVG on generating ast
t and av

t . ”N” is the amount
of entries in the buffer over which was averaged. C and D: Performance of DIFF on
generating ast

t and av
t . E: Performance of RC on generating ast

t

Anticipatory Driving for a Robot-Car Based on Supervised Learning 13

be predicted ahead. This indicates that the actions in the sequence generated by
AVG are more precise in the beginning and less reliable with longer predictions,
just as expected.

Fig. 7. A: Comparing the performance of AVG, DIFF and RC for steering generation
for at. The plotted error is the root of the summed squared difference between the
human action signal and the signal generated by each method. B: Comparing the
performance of the methods for speed generation. C: The quality of steer predictions
of RC for t, t+10..t+30 timesteps ahead. D: The quality of steer predictions of AVG
for t, t+10..t+30 timesteps ahead. As expected, the error for AVG is much less than
for RC, which indicates the capacity of AVG for action prediction.

For qualitative testing we abruptly blocked the human controller’s view dur-
ing driving. This can be interpreted as a short sensor ”black-out”, which might
occur due to technical problems. We then measure the number of timesteps the
human was able to stay on the street without visual feedback. For that we only
let the human control steering. The speed signal is set to a constant value un-
influenced by the driver, (during human performance, not for the robot). This
is done because the drivers stop the robot during the experiment as soon as
they cannot see the street anymore. Furthermore, we decide to block the view
shortly before a curve, requiring a real change in actions. We repeat this with
three more drivers: two are not trained in driving the robot, one intermediate
driver, and the expert, who also generated the training data set for the robot.
The result is shown in Fig. 9. It can be seen that the robot does perform the
turn, which means that it successfully uses its generated plan and executes it it
similarly to the trainer. It also shows that the less well trained humans lose the
track quicker than the robot.

5 Discussion

We presented a robot-car that learns anticipatory driving from a human su-
pervisor and visual sensory data. Anticipatory means that it learns to generate
action sequences and to react to upcoming events, which is necessary for velocity
control (e.g. speed must be decreased when approaching sharp turns). It runs

14 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

Fig. 8. Comparison of the combined signal to RC, Planner, and human output, where
the robot was driven by the human. At around t = 100 it can be seen how the combined
signal is better than the Planner output by being drawn closer to the RC signal.

Fig. 9. Top view on part of the track. Shown is the driven trajectory of the drivers and
the robot, sampled every 10 centimeters. The horizontal line denotes where the view
was blocked.

Anticipatory Driving for a Robot-Car Based on Supervised Learning 15

at real-time and issues steering and velocity controls in a human-like way. Its
planning capability allows it to cope with missing visual input.

In contrast to many current approaches to vehicle control, which are mostly
model-based, very little a priori knowledge was required. Instead the system
achieved its behavior by being equipped only with mechanisms for associative
learning and memory.

First, a reactive controller associated short-term visual information with sin-
gle actions from a human teacher. Following the idea that a system that re-
peatedly executes similar action sequences after observing similar images should
be able to also associate these things, a planner learned to correlate observed
street trajectories with subsequently performed action sequences. During perfor-
mance the combined signal between reactive controller and planner was shown
to lead to robust lane following behaviour. As described in the Results section,
the combined signal is jerkier when relying on RC in unknown situations and
smoother when using the planner in well known situations. This appears natu-
ral when considering that humans also produce smoother action sequences (in
dancing for example) after training. In particular, it was not necessary to build
a map of the environment from the visual sensor input to acquire action plans.
Visual information could be processed directly in image coordinates. No sensor
model was needed, thus it was not necessary to know the camera geometry or
to undistort image frames. This makes this approach easy to implement and to
use.

Concerning velocity control this work makes a novel contribution with respect
to the work in autonomous driving that is not based on constructing environ-
mental maps, namely the ability of the system to generate speed control based
on the visually perceived upcoming curves.

Since this work is related to predictive control, we shortly compare it to
methods usually used in this context. All of the cited model-based work in the
Introduction uses state estimators for generating action control. As state esti-
mators, a variant of the Kalman filter [16] is often used. Such a filter requires
knowledge about the state-transition probability of the system, i.e. it must be
known how the system’s state changes under the influence of actions or time.
Based on this, and possibly also on knowledge about the sensing process, a prob-
able future state can be predicted. Then actions can be chosen with regard to
the predicted future state of the system. If this is done repeatedly (like a mental
simulation), action sequences can be obtained. The main difference between this
way of achieving predictions and our method is that we skip the state prediction.
We generate action predictions not by inferring them from a predicted state, but
by memorizing entire sequences. We see two advantages in that: 1) it is faster,
simply because the step of state generation is not necessary; 2) it is less prone to
error, because fixed sequences are stored and do not have to be generated step
by step based on predicted states that get more and more erroneous. Of course,
not being able to predict future states is a disadvantage. For example, we cannot
link multiple sequences together, which would be possible if we knew the state

16 Irene Markelić, Tomas Kulviĉius, Minija Tamoŝiunaite, Florentin Wörgötter

of the system after the execution of an action sequence. However, this approach
could be extended to also predict future states.

Acknowledgments. This work was supported by the European Comission
grant DRIVSCO.

References

1. Sun, R., Sessions, C.: Learning plans without a priori knowledge. Adaptive Be-
havior 8(3-4) (2000) 225–253

2. Dickmanns, E.D., Graefe, V.: Dynamic monocular machine vision. Machine Vision
and Applications 1 (1988) 223–240

3. Turk, M.A., Morgenthaler, D.G., Gremban, K.D., Marra, M.: Vits-a vision system
for autonomous land vehicle navigation. IEEE Trans. Pattern Anal. Mach. Intell.
10(3) (1988) 342–361

4. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong,
P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt,
V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.E., Koelen, C., Markey,
C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies,
B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that
won the darpa grand challenge:. J. Robot. Syst. 23(9) (2006) 661–692

5. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Dolan, J., Duggins,
D., Ferguson, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert,
M., Howard, T., Kelly, A., Kohanbash, D., Likhachev, M., Miller, N., Peterson,
K., Rajkumar, R., Rybski, P., Salesky, B., Scherer, S., Woo-Seo, Y., Simmons,
R., Singh, S., Snider, J., Stentz, A., Whittaker, W.., Ziglar, J.: Tartan racing:
A multi-modal approach to the darpa urban challenge. Darpa Technical Report
(2007)

6. Pomerleau, D.: Alvinn: An autonomous land vehicle in a neural network. In:
Advances in Neural Information Processing Systems 1, Morgan Kaufmann (1989)

7. Pomerleau, D.: Efficient training of artificial neural networks for autonomous nav-
igation. Neural Computation 3(1) (1991) 88–97

8. Pomerleau, D.: Neural network based autonomous navigation. In: NAVLAB90.
(1990) 558–614

9. Pomerleau, D.A.: Neural network vision for robot driving. In: The Handbook of
Brain Theory and Neural Networks. M. Arbib (1999)

10. Riedmiller, M., Montemerlo, M., Dahlkamp, H.: Learning to drive a real car in
20 minutes. In: Proc. Frontiers in the Convergence of Bioscience and Information
Technologies FBIT 2007. (2007) 645–650

11. Togelius, J., Lucas, S.: Evolving robust and specialized car racing skills. In: Proc.
CEC 2006. Evolutionary Computation IEEE Congress on. (2006) 1187–1194

12. Brookhuis, K., de Waard, D.: Limiting speed, towards an intelligent speed adapter
(isa),. Transportation Research Part F: Traffic Psychology and Behaviour 2 (1999)
81–90

13. Tahirovic, A., Konjicija, S., Avdagic, Z., Meier, G., Wurmthaler, C.: Longitudinal
vehicle guidance using neural networks. In: Computational Intelligence in Robotics
and Automation, 2005. CIRA 2005. (2005)

Anticipatory Driving for a Robot-Car Based on Supervised Learning 17

14. Partouche, D., Pasquier, M., Spalanzani, A.: Intelligent speed adaptation using a
self-organizing neuro-fuzzy controller. In: Proc. IEEE Intelligent Vehicles Sympo-
sium. (2007) 846–851

15. Kwasnicka, H., Dudala, M.: Neuro-fuzzy driver learning from real driving observa-
tions. In: Proceedings of the Artificial Intelligence in Control and Managamnent.
(2002)

16. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
action of the ASMEJournal of Basic Engineering (1960) 33–45

17. Volksbot: http://www.volksbot.de (2000)
18. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern

Anal. Machine Intell. 8 (1986) 679–698
19. Donges, E.: A two-level model of driver steering behaviour. Hum Factors 20 (1978)

691707
20. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization 10 (1973)
112–122

21. Aha, D.W., ed.: Editorial. In: Lazy Learning. Volume 11 of Artificial Intelligence
Review. Kluwer Academic Publishers (1997) 7–10

22. Bottou, L., Vapnik, V.: Local learning algorithms. Neural Computation 4 (1992)
888–900

23. Santamaria, J.C., Sutton, R.S., Ram, A.: Experiments with reinforcement learning
in problems with continuous state and action spaces. Adaptive Behavior 6 (1997)
163–217

24. Smart, W.D., Kaelbling, L.P.: Practical reinforcement learning in continuous
spaces. In: Proceedings of the Seventeenth International Conference on Machine
Learning. (2000)

