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This paper  presents a modular neural network controller for fast locomotion of a 
quadruped robot. It was generated by artificial evolution techniques using a physical 
simulation of the Sony Aibo ERS-7. Co-evolution was used to develop neuromodules 
controlling the single legs as well as the coordination between the four legs. The final 
neurocontroller utilizes a central pattern generator and does not make use of available 
sensory inputs. In experiments with the physical robot a top walking speed of 47.34 cm/s 
was measured, where lateral leg movement contributed considerably to the achieved high 
velocity. 

1.   Introduction 
The control of legged locomotion in robots is still a challenging 
problem, especially for fast locomotion. Apart from some 
exceptions like Raibert's robots [1] most legged machines move 
rather slowly [2]. It has been found that locomotion in many 
organisms is mostly driven by central pattern generators (CPGs) 
[3]. These are neural networks producing a rhythmic pattern 
without the need of sensory feedback [4]. For walking machines a 
CPG can be realized by an oscillatory artificial neural network. 
Such oscillators were used for instance by Billard and Ijispeert to 
realize a continuous passage between a walking, scratching and 
lying down behavior of an Aibo robot [5]. Kimura used neural 
oscillators to realize dynamic walking and running in a quadruped 
[6]. To find appropriate controllers for a hexapod, Beer used 
genetic algorithms and a simulation of the robot [7]. Finally he 
transferred the generated controllers to a physical machine [8]. 
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Cruse et al. developed neural networks by means of a simulation 
and implemented them in a hexapod [9]. In this paper a recurrent 
neural network for fast quadrupedal walking of a Sony Aibo ERS-
7 robot is presented. It was derived by artificial evolution 
techniques and is for use in the international competition of robot 
soccer. Since velocity is a key feature, many teams are concerned 
with fast locomotion. Published velocities of Aibo walking using 
the ERS-7 model are between 39.7 - 43.0 cm/s [10,11,12,13]. The 
paper is organized as follows: In section 2 (The Experimental 
Setup) the neuron model is introduced, and the tools employed for 
evolution and composition of the network are explained. In the 
third section (Results) the resulting controller is presented and 
analyzed. In the final section (Discussion) the results are discussed 
and related to other works. 

2.   The Experimental Setup 
All experiments were conducted using the time discrete dynamics 
of networks with standard additive neurons, using the hyperbolic 
tangent as transfer function ; i.e., 
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where a  denotes the activation, Θi the bias term of the ith neuron, t 
denotes a discrete time step, ω  refers to the weight of synapse  
rom neuron j to i, and N is the total number of neurons in a given 
network. Input neurons were treated as buffers for sensor signals. 
For evolution the program package ISEE (Integrated Structure 
Evolution Environment ) was used, which was designed to realize 
Artificial Evolution experiments. It implements the ENS  
algorithm 
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[14] and offers the physical simulator YARS  based on 
ODE (Open Dynamics Engine). ISEE permits to influence the 
evolutionary process and the network by various parameters that 
can be set during runtime, for example, to foster small networks by 
assigning cost terms to neurons and synapses. It also supports co-
evolution, i.e. the simultaneous evolution of several populations. 
Furthermore, the generation of network structure as well as 
parameter optimization is possible. 
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Figure 1.Left: The simulated robot. Right: The neurocontroller generating the fastest walking  
behaviour. Circles denote neurons and are connected via synapses. Neurons C1 to C4 are connector 
neurons which form the junction between leg modules and coordination module.  
 
A dog-like robot, the Aibo ERS-7 was used as physical platform 
for the evolved controller. Each of its four legs has three degrees of 
freedom realized by the three motors, M1, M2 and M3. The first 
motor, M1, moves the leg back and forth, whereas M2 moves it  
sideways. M3 moves only the lower limb of the leg back and forth. 
For each of these motors a sensor (S1, S2, and S3), is detecting its 
deflection angle. 
The physical simulation of the robot, as shown in Fig. 1 left, was 
realized with YARS. As relevant features to be modelled for a 
walking behavior were considered: body parts (head, trunk and 
limbs) defined by their dimensions and weights as well as the 12 
leg motors which were each defined by a deflection angle, 
strength, and velocity, and finally the according 12 deflection 
angle sensors. Since hinge torque and velocity of the motors used 
for the ERS-7 are not published they had to be measured 
experimentally. For maximal force 0.43 Ncm were used, and 286 
°/s for maximal angular velocity. To instantiate the controller in 
the robot it was rewritten as C++ program and incorporated into 
the freely available German Team Software which provides access 
to motor control and sensory information. 
Based on the hypothesis that control of insect walking can be 
considered hierarchical and modular [16], and assuming that both 
fore legs and both hind legs each carry out the same step cycle, a 
modular approach, and thus co-evolution, was chosen as an 
appropriate method. It was decided to use one network per leg, 
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where the networks for both fore- and both hind legs were 
identical. All leg modules were then connected to a  coordination 
module. A minimal leg controller contained seven neurons, one 
input neuron per sensor and one output neuron per motor. The 
seventh neuron was a hidden neuron by which the connection to 
the coordination module was realized and which is referred to as 
connector neuron. The resulting network formed the 
neurocontroller, comp. Fig. 1, right. 
When a reasonable walking behavior was observed during 
simulation the corresponding controller was transferred to the 
hardware, and the speed of the resulting gait measured. Therefore a 
test course was set up with two labels, indicating one meter and the 
robot had to cover this distance from a flying start and with fully 
charged batteries while being filmed. Each neurocontroller was 
tested 10 times, and its speed was set to be the average value of 
these runs. 
Various experiments were conducted, and the best results were 
achieved when using a CPG as coordination module. The 
employed CPG, depicted in Fig. 2A, was adopted from [17]. Its 
output are four sinusoidal signals with equal phase shift (see Fig. 
2, bottom left), of which each leg module received one in the 
order: right hind leg, right foreleg, left hind leg and left foreleg. 
This, together with the corresponding phase shift, generated a 
reasonable walking gait. An evolution run was started by providing 
initial network structures for the leg modules in order to avoid the 
bootstrap-problem. They caused a pendulum like movement of the 
legs which was triggered by sensory input. Parameter settings of 
the evolutionary program enabled an alteration of structure, 
bias and synaptic weights of these networks. Structure and 
synaptic weights of the CPG were chosen to be fixed, because 
already small changes often had undesirable effects for the output 
signals, e.g. the loss of periodicity. The fitness function was 
given by 
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where t denotes discrete time, and x the position along the x-axis 
of the simulated robot in world coordinates, which was equal to the 
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covered forward distance. It was squared to increase selection 
pressure. To punish individuals with high frequency oscillating 
legs, a problem that frequently occurred, the change of direction in 
leg movement was counted, denoted by c. It was then multiplied 
by a factor, α, which was adjustable during runtime. In addition, 
low obstacles were built into the simulated environment which 
could not be overcome by individuals with fast oscillating leg 
movements, so that they could not gain high fitness values.  After 
4320 generations a neurocontroller leading to a speed of 39.56 
cm/s was generated. 

3.   Results 
The resulting network structure is shown in Fig.2, right. It is 
observable that no further hidden neurons, apart from the 
connector neuron, were part of the leg networks and that the only 
driving force of the controller was the CPG. Although sensory 
input from 12 sensors was available during evolution, only one 
sensor in the hind leg modules was effciently used. It was found 
that this sensor input was important for the initial behavior of the 
simulated robot. It modulated the trajectory of the signals that 
controlled M1 of both hind legs in such a way that the simulated 
robot could get in a position from which it could start walking. 
Because the physical robot was not started from such a position ( it 
was put on the floor when moving) it was not affected by this 
mechanism. Thus, a controller for walking without any 
incorporation of sensory feedback had been evolved. 
Signals were fed back into the CPG coming from the connector 
neurons. Although the according synapse weights were small, 
between [-0.08, 0.08] they had impact on the CPG's output signals, 
as can be observed when comparing Fig. 2, bottom middle and 
bottom right. Changes in amplitude (C1, C4), period (C1, C2, C3, 
C4), phase shift (C4, C3) and signal shape (C3) are observable. 
With this controller the robot did not walk in a straight line, which 
was due to the different signals the motors received. Therefore 
synaptic weights were carefully adjusted so that all legs received a 
similar signal (see Fig. 2 top, right). 
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Figure 2. Top row: The CPG with connector neuron of each leg (C1-C4).  The originally used CPG, 
left, the CPG with evolutionary altered parameters, middle, and the manually adjusted CPG, right. 
The corresponding bias values are listed in table 1. Bottom row:  The plot below each CPG shows 
the output of the four connector neurons. Each curve has is labelled with the corresponding neuron.  
 
Furthermore parameters were altered to find out which stride 
frequency and length were most appropriate. This was done 
manually, but could have been done using evolution. As was 
already indicated by the longer period time of CPG signals after 
evolution, the best results were attained with a lower CPG signal 
frequency of 1.8Hz. The initial frequency in comparison was 
2.2Hz. In Fig. 3 the signal of M1 of the right foreleg is plotted 
along with the according sensor signal. It is observable that the 
motor lags behind the given signal and never reaches the target 
amplitude. Thus, with a larger period  the motor can follow the 
given signal better, which finally results in a larger step length. In 
contrast, a higher frequency automatically led to smaller steps and 
due to the inertia of the motors to a lower speed of the walking 
behavior.  
Leg posture was determined by the bias values of the according 
output neurons. Changing these values enabled a straighter posture 
of the legs which caused larger steps. The final neurocontroller 
(see Fig 2, right) generated a walking behavior with a speed of 
45.95 cm/s, with a top speed of 47.34 cm/s. Videos of the 
behaviour  are available under  
www.fraunhofer.de/~zahedi/aibo.html. The obtained gait is a walk 
with duty factor 2.058.0 ±=β  for all legs. Where duty factor is 
the ratio between the duration that a leg has ground contact and the 
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duration when it is lifted off the ground during one stride. One 
major difference to other Aibo walking behaviors was the 
incorporation of M2 in the hind leg modules, which resulted in a 
sideways movement of these legs. It caused the robot to rock from 
one side to the other while walking (compare video). Lesion 
experiments showed that this resulted in a gain of speed of 11.8%.   
 
Table 1. A comparison of bias values of the different CPGs. The 
enumeration of neurons is according Fig. 2, nn = neuron number, bo 
= bias of original CPG, ba = bias of evolutionary altered CPG, and 
bop = bias of optimized CPG. 

nn bo ba bop nn bo ba bop 

C1 0 -0.003 0 5 0.01 0.017 0.0175 

C2 0 0.0016 0 6 0 0.0053 0.0053 

C3 0 -0.002 0 7 0 0.0037 0.0037 

C4 0 0.0065 0 8 0 -0.0044 -0.0044 

Fig. 3. Output of M1 and S1. 
S1 shows the actual 
deflection of the motor. 
Whereas M1 can be 
interpreted as a setpoint 
signal.  

4.   Discussion 
Modular neurocontrollers were evolved to control a physical Aibo-
ERS-7 robot. Using a physical simulator and additional 
adjustments, the final controller was able to generate a fast straight 
walking behavior for this robot of about 47,3 cm/s. It was found 
that a sideway movement of hind legs resulted in a higher walking 
velocity. This can be explained by the shift of the robot's center of 
gravity from side to side, caused by the lateral hind leg movement. 
When one bodyhalf was tilted towards the ground, carrying most 
of the weight, the other side was moved upwards, leaving more 
time and force for legs on this side to be moved.Thus, it is 
concluded that a pace gait in addition to the horizontal body tilt 
can lead to a higher walking speed for this particular robot, than a 
trot or a walk  Experiments by Beer suggest that sensory input is 
always incorporated when available [8]. That this does not happen 
in this case may result from the fact that sensory input was simply 
not needed for the task at hand, because of the driving CPG. 
Evolution took place in an environment that indeed contained 
obstacles, but obstacle height was relatively low. Once it was 
provided that legs were lifted up high enough there was no reason 
for a more sophisticated behavior. That no sensory input was fed 
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into the network supports an hypothesis by Full and Koditschek 
[19] that rapid locomotion relies rather on feedforward control than 
on continuous sensorimotor feedback. This is thought to be due to 
the little time available to process proprioceptive input [19]. For 
future work, it is desirable to steer the walking direction of the 
robot. For this, visual sensory input could be used as a tropism 
(e.g. using the robot's camera to follow a colored ball). 
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